Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 33 a + 11 + \left(21 a + 3\right)\cdot 37 + \left(26 a + 4\right)\cdot 37^{2} + \left(36 a + 5\right)\cdot 37^{3} + \left(24 a + 33\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 16 + 34\cdot 37 + 36\cdot 37^{2} + 27\cdot 37^{3} + 31\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 35 + 32\cdot 37 + 34\cdot 37^{2} + 17\cdot 37^{3} +O\left(37^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 4 a + 32 + \left(15 a + 20\right)\cdot 37 + \left(10 a + 14\right)\cdot 37^{2} + 14\cdot 37^{3} + \left(12 a + 22\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 19 + 19\cdot 37 + 20\cdot 37^{2} + 8\cdot 37^{3} + 23\cdot 37^{4} +O\left(37^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $10$ |
$2$ |
$(1,2)$ |
$0$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.