Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{3} + 9 x + 92 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5 + 65\cdot 97 + 95\cdot 97^{2} + 85\cdot 97^{3} + 36\cdot 97^{4} + 10\cdot 97^{5} + 64\cdot 97^{6} + 53\cdot 97^{7} + 66\cdot 97^{8} + 41\cdot 97^{9} + 9\cdot 97^{10} + 19\cdot 97^{11} + 61\cdot 97^{12} + 33\cdot 97^{13} + 18\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 54 a^{2} + 2 a + 33 + \left(60 a^{2} + 71 a + 72\right)\cdot 97 + \left(33 a^{2} + 36 a + 7\right)\cdot 97^{2} + \left(67 a^{2} + 89 a + 16\right)\cdot 97^{3} + \left(62 a^{2} + 72 a + 85\right)\cdot 97^{4} + \left(88 a^{2} + 34 a + 46\right)\cdot 97^{5} + \left(18 a^{2} + 59 a + 16\right)\cdot 97^{6} + \left(77 a^{2} + 6 a + 75\right)\cdot 97^{7} + \left(64 a^{2} + 7 a\right)\cdot 97^{8} + \left(72 a^{2} + 71 a + 48\right)\cdot 97^{9} + \left(83 a^{2} + 90 a + 17\right)\cdot 97^{10} + \left(42 a^{2} + 92 a + 63\right)\cdot 97^{11} + \left(59 a^{2} + 30 a + 65\right)\cdot 97^{12} + \left(25 a^{2} + 24 a + 56\right)\cdot 97^{13} + \left(12 a^{2} + 3 a + 73\right)\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 38 a^{2} + 26 a + 34 + \left(43 a^{2} + 96 a + 66\right)\cdot 97 + \left(74 a^{2} + 11 a + 58\right)\cdot 97^{2} + \left(88 a^{2} + 10 a + 47\right)\cdot 97^{3} + \left(47 a^{2} + 93\right)\cdot 97^{4} + \left(53 a^{2} + 41 a + 29\right)\cdot 97^{5} + \left(51 a^{2} + 96 a + 18\right)\cdot 97^{6} + \left(28 a^{2} + 74 a + 74\right)\cdot 97^{7} + \left(75 a^{2} + 15 a + 63\right)\cdot 97^{8} + \left(70 a^{2} + 84 a + 36\right)\cdot 97^{9} + \left(82 a^{2} + 54 a + 11\right)\cdot 97^{10} + \left(12 a^{2} + 41 a + 77\right)\cdot 97^{11} + \left(26 a^{2} + 91 a + 59\right)\cdot 97^{12} + \left(92 a^{2} + 27 a + 68\right)\cdot 97^{13} + \left(18 a^{2} + 36 a + 16\right)\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 78 + 96\cdot 97 + 97^{2} + 18\cdot 97^{3} + 29\cdot 97^{4} + 28\cdot 97^{5} + 80\cdot 97^{6} + 20\cdot 97^{7} + 49\cdot 97^{8} + 82\cdot 97^{9} + 72\cdot 97^{10} + 70\cdot 97^{11} + 75\cdot 97^{12} + 70\cdot 97^{13} + 17\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 47 a^{2} + 70 a + 88 + \left(12 a^{2} + 61 a + 74\right)\cdot 97 + \left(80 a^{2} + 95 a + 92\right)\cdot 97^{2} + \left(18 a^{2} + 66 a + 15\right)\cdot 97^{3} + \left(6 a^{2} + 31 a + 37\right)\cdot 97^{4} + \left(13 a^{2} + 17 a + 78\right)\cdot 97^{5} + \left(93 a^{2} + 62 a + 73\right)\cdot 97^{6} + \left(8 a^{2} + 22 a + 53\right)\cdot 97^{7} + \left(63 a^{2} + 67 a + 87\right)\cdot 97^{8} + \left(86 a^{2} + 59 a + 34\right)\cdot 97^{9} + \left(3 a^{2} + 83 a + 23\right)\cdot 97^{10} + \left(84 a^{2} + 25 a + 19\right)\cdot 97^{11} + \left(48 a^{2} + 8 a + 2\right)\cdot 97^{12} + \left(87 a^{2} + 48 a + 40\right)\cdot 97^{13} + \left(26 a^{2} + 84 a + 64\right)\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 69 a^{2} + 37 a + 26 + \left(82 a^{2} + 84 a + 11\right)\cdot 97 + \left(3 a^{2} + 7 a + 23\right)\cdot 97^{2} + \left(68 a^{2} + 87 a + 20\right)\cdot 97^{3} + \left(79 a^{2} + 21 a + 90\right)\cdot 97^{4} + \left(55 a^{2} + 91 a + 43\right)\cdot 97^{5} + \left(56 a^{2} + 94 a + 48\right)\cdot 97^{6} + \left(52 a^{2} + 62 a + 24\right)\cdot 97^{7} + \left(75 a^{2} + 31 a + 65\right)\cdot 97^{8} + \left(70 a^{2} + 32 a + 36\right)\cdot 97^{9} + \left(54 a^{2} + 21 a + 37\right)\cdot 97^{10} + \left(13 a^{2} + 8 a + 81\right)\cdot 97^{11} + \left(44 a^{2} + 50 a + 70\right)\cdot 97^{12} + \left(19 a^{2} + 69 a + 19\right)\cdot 97^{13} + \left(5 a^{2} + 49 a + 31\right)\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 14 + 32\cdot 97 + 96\cdot 97^{2} + 89\cdot 97^{3} + 30\cdot 97^{4} + 58\cdot 97^{5} + 49\cdot 97^{6} + 22\cdot 97^{7} + 78\cdot 97^{8} + 69\cdot 97^{9} + 14\cdot 97^{10} + 7\cdot 97^{11} + 57\cdot 97^{12} + 89\cdot 97^{13} + 60\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 93 a^{2} + 25 a + 73 + \left(23 a^{2} + 61 a + 46\right)\cdot 97 + \left(80 a^{2} + 61 a + 93\right)\cdot 97^{2} + \left(10 a^{2} + 37 a + 64\right)\cdot 97^{3} + \left(28 a^{2} + 89 a + 71\right)\cdot 97^{4} + \left(92 a^{2} + 44 a + 68\right)\cdot 97^{5} + \left(81 a^{2} + 72 a + 6\right)\cdot 97^{6} + \left(10 a^{2} + 67 a + 65\right)\cdot 97^{7} + \left(66 a^{2} + 22 a + 8\right)\cdot 97^{8} + \left(34 a^{2} + 63 a + 14\right)\cdot 97^{9} + \left(9 a^{2} + 19 a + 56\right)\cdot 97^{10} + \left(67 a^{2} + 75 a + 14\right)\cdot 97^{11} + \left(85 a^{2} + 57 a + 29\right)\cdot 97^{12} + \left(80 a^{2} + 24 a\right)\cdot 97^{13} + \left(57 a^{2} + 9 a + 56\right)\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 87 a^{2} + 34 a + 37 + \left(67 a^{2} + 13 a + 19\right)\cdot 97 + \left(18 a^{2} + 77 a + 15\right)\cdot 97^{2} + \left(37 a^{2} + 96 a + 29\right)\cdot 97^{3} + \left(66 a^{2} + 74 a + 10\right)\cdot 97^{4} + \left(84 a^{2} + 61 a + 23\right)\cdot 97^{5} + \left(85 a^{2} + 2 a + 30\right)\cdot 97^{6} + \left(15 a^{2} + 56 a + 95\right)\cdot 97^{7} + \left(43 a^{2} + 49 a + 64\right)\cdot 97^{8} + \left(52 a^{2} + 77 a + 23\right)\cdot 97^{9} + \left(56 a^{2} + 20 a + 48\right)\cdot 97^{10} + \left(70 a^{2} + 47 a + 35\right)\cdot 97^{11} + \left(26 a^{2} + 52 a + 63\right)\cdot 97^{12} + \left(82 a^{2} + 96 a + 8\right)\cdot 97^{13} + \left(72 a^{2} + 10 a + 49\right)\cdot 97^{14} +O\left(97^{ 15 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,3,5)(2,7,9)(4,6,8)$ |
| $(2,9)(3,8)(4,7)(5,6)$ |
| $(1,4,7)(2,5,8)(3,6,9)$ |
| $(2,5,8)(3,9,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $9$ |
$2$ |
$(1,2)(3,6)(4,8)(5,7)$ |
$0$ |
| $2$ |
$3$ |
$(1,4,7)(2,5,8)(3,6,9)$ |
$-3$ |
| $3$ |
$3$ |
$(1,7,4)(2,5,8)$ |
$0$ |
| $3$ |
$3$ |
$(1,4,7)(2,8,5)$ |
$0$ |
| $6$ |
$3$ |
$(1,3,5)(2,7,9)(4,6,8)$ |
$0$ |
| $6$ |
$3$ |
$(1,5,3)(2,9,7)(4,8,6)$ |
$0$ |
| $6$ |
$3$ |
$(1,5,6)(2,3,7)(4,8,9)$ |
$0$ |
| $9$ |
$6$ |
$(1,8,7,2,4,5)(3,6)$ |
$0$ |
| $9$ |
$6$ |
$(1,5,4,2,7,8)(3,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.