Properties

Label 6.2e4_3e8_5e5.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 2^{4} \cdot 3^{8} \cdot 5^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$328050000= 2^{4} \cdot 3^{8} \cdot 5^{5} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + 2 x^{3} - 4 x^{2} - 4 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 44 a + 55 + \left(7 a + 31\right)\cdot 67 + \left(40 a + 20\right)\cdot 67^{2} + \left(16 a + 41\right)\cdot 67^{3} + \left(23 a + 26\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 30 + \left(59 a + 18\right)\cdot 67 + \left(26 a + 39\right)\cdot 67^{2} + 50 a\cdot 67^{3} + \left(43 a + 36\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 28 + 40\cdot 67 + 58\cdot 67^{2} + 48\cdot 67^{3} + 14\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 59 + 60\cdot 67 + 18\cdot 67^{2} + 66\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 31 + 49\cdot 67 + 63\cdot 67^{2} + 43\cdot 67^{3} + 38\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.