Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 44 a + 55 + \left(7 a + 31\right)\cdot 67 + \left(40 a + 20\right)\cdot 67^{2} + \left(16 a + 41\right)\cdot 67^{3} + \left(23 a + 26\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 23 a + 30 + \left(59 a + 18\right)\cdot 67 + \left(26 a + 39\right)\cdot 67^{2} + 50 a\cdot 67^{3} + \left(43 a + 36\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 28 + 40\cdot 67 + 58\cdot 67^{2} + 48\cdot 67^{3} + 14\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 59 + 60\cdot 67 + 18\cdot 67^{2} + 66\cdot 67^{3} + 17\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 31 + 49\cdot 67 + 63\cdot 67^{2} + 43\cdot 67^{3} + 38\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $10$ |
$2$ |
$(1,2)$ |
$0$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.