Properties

Label 6.2e4_3e5_71e4.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 2^{4} \cdot 3^{5} \cdot 71^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$98800615728= 2^{4} \cdot 3^{5} \cdot 71^{4} $
Artin number field: Splitting field of $f= x^{5} - 10 x^{3} - 2 x^{2} + 24 x + 14 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 157 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 157 }$: $ x^{2} + 152 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 124 a + 100 + \left(134 a + 114\right)\cdot 157 + \left(88 a + 120\right)\cdot 157^{2} + \left(82 a + 7\right)\cdot 157^{3} + \left(88 a + 141\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 149 a + 98 + \left(155 a + 110\right)\cdot 157 + \left(143 a + 56\right)\cdot 157^{2} + \left(41 a + 78\right)\cdot 157^{3} + \left(80 a + 109\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 8 a + 58 + \left(a + 113\right)\cdot 157 + \left(13 a + 149\right)\cdot 157^{2} + \left(115 a + 143\right)\cdot 157^{3} + \left(76 a + 154\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 123 + 95\cdot 157 + 27\cdot 157^{2} + 66\cdot 157^{3} + 35\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 a + 92 + \left(22 a + 36\right)\cdot 157 + \left(68 a + 116\right)\cdot 157^{2} + \left(74 a + 17\right)\cdot 157^{3} + \left(68 a + 30\right)\cdot 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.