Properties

Label 6.2e4_3e5_5e8.20t35.3
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{5} \cdot 5^{8}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$1518750000= 2^{4} \cdot 3^{5} \cdot 5^{8} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 5 x^{2} + 3 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 30\cdot 43 + 30\cdot 43^{2} + 3\cdot 43^{3} + 8\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 21 + \left(26 a + 14\right)\cdot 43 + \left(16 a + 32\right)\cdot 43^{2} + \left(27 a + 12\right)\cdot 43^{3} + \left(37 a + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 28 + \left(17 a + 16\right)\cdot 43 + \left(33 a + 34\right)\cdot 43^{2} + 2\cdot 43^{3} + \left(15 a + 19\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 35\cdot 43 + 43^{2} + 30\cdot 43^{3} + 25\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 3 + \left(25 a + 16\right)\cdot 43 + \left(9 a + 7\right)\cdot 43^{2} + \left(42 a + 13\right)\cdot 43^{3} + \left(27 a + 33\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 3 + \left(16 a + 16\right)\cdot 43 + \left(26 a + 22\right)\cdot 43^{2} + \left(15 a + 23\right)\cdot 43^{3} + \left(5 a + 26\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,4,3,2,5)$
$(1,4)(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,4)(2,3)(5,6)$ $0$
$15$ $2$ $(1,5)(2,3)$ $-2$
$20$ $3$ $(1,4,2)(3,5,6)$ $0$
$30$ $4$ $(1,2,5,3)$ $0$
$24$ $5$ $(1,6,2,4,5)$ $1$
$20$ $6$ $(1,6,4,3,2,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.