Properties

Label 6.2e4_3e5_23e5.20t35.2c1
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{5} \cdot 23^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$25024501584= 2^{4} \cdot 3^{5} \cdot 23^{5} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 2 x^{4} - 2 x^{3} + x^{2} + 5 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.3_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 8 + 42\cdot 53 + 47\cdot 53^{2} + 14\cdot 53^{3} + 2\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 33 a + 43 + \left(44 a + 9\right)\cdot 53 + \left(37 a + 9\right)\cdot 53^{2} + \left(8 a + 16\right)\cdot 53^{3} + \left(30 a + 39\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 + 45\cdot 53 + 12\cdot 53^{2} + 19\cdot 53^{3} + 10\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 50 a + 4 + \left(36 a + 10\right)\cdot 53 + \left(40 a + 3\right)\cdot 53^{2} + \left(26 a + 41\right)\cdot 53^{3} + \left(13 a + 43\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 45 + \left(16 a + 1\right)\cdot 53 + \left(12 a + 23\right)\cdot 53^{2} + \left(26 a + 1\right)\cdot 53^{3} + \left(39 a + 18\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + 16 + \left(8 a + 49\right)\cdot 53 + \left(15 a + 9\right)\cdot 53^{2} + \left(44 a + 13\right)\cdot 53^{3} + \left(22 a + 45\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,4,6,5)$
$(1,3)(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,3)(2,4)(5,6)$$0$
$15$$2$$(1,5)(4,6)$$-2$
$20$$3$$(1,3,6)(2,4,5)$$0$
$30$$4$$(1,6,5,4)$$0$
$24$$5$$(1,4,3,2,6)$$1$
$20$$6$$(1,2,3,4,6,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.