Properties

Label 6.2e4_3e5_11e4_17e4.20t35.2
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{5} \cdot 11^{4} \cdot 17^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$4754366776368= 2^{4} \cdot 3^{5} \cdot 11^{4} \cdot 17^{4} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 4 x^{4} + 6 x^{2} + 2 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 54 a + 19 + \left(8 a + 55\right)\cdot 61 + \left(35 a + 27\right)\cdot 61^{2} + \left(37 a + 45\right)\cdot 61^{3} + \left(4 a + 49\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 30 + 28\cdot 61 + 39\cdot 61^{2} + 57\cdot 61^{3} + 50\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 43 + 25\cdot 61 + 43\cdot 61^{2} + 21\cdot 61^{3} + 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 12 + \left(52 a + 10\right)\cdot 61 + \left(25 a + 54\right)\cdot 61^{2} + \left(23 a + 47\right)\cdot 61^{3} + \left(56 a + 16\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 59 a + 42 + \left(11 a + 24\right)\cdot 61 + 29 a\cdot 61^{2} + \left(52 a + 24\right)\cdot 61^{3} + \left(50 a + 2\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 40 + \left(49 a + 38\right)\cdot 61 + \left(31 a + 17\right)\cdot 61^{2} + \left(8 a + 47\right)\cdot 61^{3} + 10 a\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6,5,3,2)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)(3,6)(4,5)$ $0$
$15$ $2$ $(1,2)(4,6)$ $-2$
$20$ $3$ $(1,6,3)(2,4,5)$ $0$
$30$ $4$ $(1,4,2,6)$ $0$
$24$ $5$ $(1,3,4,6,5)$ $1$
$20$ $6$ $(1,4,6,5,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.