Properties

Label 6.2e4_3e5_11e4_13e2.8t34.1c1
Dimension 6
Group $V_4^2:S_3$
Conductor $ 2^{4} \cdot 3^{5} \cdot 11^{4} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$V_4^2:S_3$
Conductor:$9620191152= 2^{4} \cdot 3^{5} \cdot 11^{4} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{8} - 2 x^{7} - 3 x^{6} - 2 x^{5} + 7 x^{4} + 6 x^{3} + 27 x^{2} + 30 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $V_4^2:S_3$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 22.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{3} + 4 x + 17 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 15\cdot 19 + 5\cdot 19^{2} + 4\cdot 19^{3} + 15\cdot 19^{4} + 17\cdot 19^{5} + 9\cdot 19^{6} + 14\cdot 19^{7} + 4\cdot 19^{8} + 9\cdot 19^{9} + 7\cdot 19^{11} + 11\cdot 19^{12} + 11\cdot 19^{13} + 6\cdot 19^{14} + 18\cdot 19^{15} + 11\cdot 19^{16} + 13\cdot 19^{17} + 4\cdot 19^{18} + 10\cdot 19^{19} + 3\cdot 19^{20} + 10\cdot 19^{21} +O\left(19^{ 22 }\right)$
$r_{ 2 }$ $=$ $ 16 + 4\cdot 19 + 13\cdot 19^{2} + 13\cdot 19^{3} + 2\cdot 19^{4} + 8\cdot 19^{5} + 17\cdot 19^{6} + 6\cdot 19^{7} + 3\cdot 19^{8} + 4\cdot 19^{9} + 2\cdot 19^{10} + 9\cdot 19^{11} + 3\cdot 19^{12} + 4\cdot 19^{13} + 11\cdot 19^{14} + 6\cdot 19^{15} + 6\cdot 19^{16} + 4\cdot 19^{17} + 7\cdot 19^{18} + 12\cdot 19^{19} + 16\cdot 19^{20} + 9\cdot 19^{21} +O\left(19^{ 22 }\right)$
$r_{ 3 }$ $=$ $ 13 a^{2} + 14 a + 3 + \left(2 a^{2} + a + 2\right)\cdot 19 + \left(2 a^{2} + 10\right)\cdot 19^{2} + \left(15 a^{2} + 15 a + 13\right)\cdot 19^{3} + \left(9 a^{2} + 4 a + 14\right)\cdot 19^{4} + \left(14 a^{2} + 15 a + 13\right)\cdot 19^{5} + \left(4 a^{2} + 17 a + 15\right)\cdot 19^{6} + \left(3 a^{2} + 18 a + 3\right)\cdot 19^{7} + \left(9 a^{2} + 18 a + 10\right)\cdot 19^{8} + \left(11 a^{2} + 3 a + 8\right)\cdot 19^{9} + \left(4 a^{2} + 5 a + 18\right)\cdot 19^{10} + \left(9 a^{2} + 2 a + 15\right)\cdot 19^{11} + \left(17 a^{2} + 5 a + 4\right)\cdot 19^{12} + \left(12 a^{2} + 7 a + 5\right)\cdot 19^{13} + \left(4 a^{2} + 9 a + 10\right)\cdot 19^{14} + \left(10 a^{2} + 7 a + 8\right)\cdot 19^{15} + \left(10 a + 16\right)\cdot 19^{16} + \left(5 a^{2} + a + 8\right)\cdot 19^{17} + \left(14 a + 5\right)\cdot 19^{18} + \left(11 a^{2} + 6 a + 13\right)\cdot 19^{19} + \left(9 a^{2} + 11\right)\cdot 19^{20} + \left(16 a^{2} + 15 a + 2\right)\cdot 19^{21} +O\left(19^{ 22 }\right)$
$r_{ 4 }$ $=$ $ 14 a^{2} + 14 a + 12 + \left(18 a^{2} + 13 a\right)\cdot 19 + \left(7 a^{2} + 9 a + 13\right)\cdot 19^{2} + \left(7 a^{2} + a + 5\right)\cdot 19^{3} + \left(14 a^{2} + 16 a + 14\right)\cdot 19^{4} + \left(7 a^{2} + 6 a + 14\right)\cdot 19^{5} + \left(3 a + 16\right)\cdot 19^{6} + \left(9 a + 7\right)\cdot 19^{7} + \left(a^{2} + 15 a + 7\right)\cdot 19^{8} + \left(18 a^{2} + 9 a + 13\right)\cdot 19^{9} + \left(a^{2} + 8 a + 17\right)\cdot 19^{10} + \left(17 a^{2} + 2 a + 17\right)\cdot 19^{11} + \left(5 a^{2} + a + 11\right)\cdot 19^{12} + \left(18 a^{2} + 17 a\right)\cdot 19^{13} + \left(16 a^{2} + 8 a + 5\right)\cdot 19^{14} + \left(17 a^{2} + 10 a + 16\right)\cdot 19^{15} + \left(18 a^{2} + 8 a + 14\right)\cdot 19^{16} + \left(10 a^{2} + 11 a + 5\right)\cdot 19^{17} + \left(11 a^{2} + 11 a + 10\right)\cdot 19^{18} + \left(10 a^{2} + 7 a + 18\right)\cdot 19^{19} + \left(5 a^{2} + 18 a\right)\cdot 19^{20} + \left(3 a + 10\right)\cdot 19^{21} +O\left(19^{ 22 }\right)$
$r_{ 5 }$ $=$ $ 4 a^{2} + 5 a + 12 + \left(2 a^{2} + 4 a + 10\right)\cdot 19 + \left(7 a^{2} + 6 a + 14\right)\cdot 19^{2} + \left(5 a^{2} + 17 a + 9\right)\cdot 19^{3} + \left(17 a^{2} + 14 a + 13\right)\cdot 19^{4} + \left(a^{2} + 12 a + 8\right)\cdot 19^{5} + \left(3 a^{2} + 8 a + 2\right)\cdot 19^{6} + \left(16 a^{2} + 18 a + 9\right)\cdot 19^{7} + \left(13 a^{2} + 16 a + 10\right)\cdot 19^{8} + \left(3 a^{2} + 2 a + 8\right)\cdot 19^{9} + \left(13 a^{2} + 13 a + 15\right)\cdot 19^{10} + \left(3 a^{2} + 12 a + 6\right)\cdot 19^{11} + \left(5 a^{2} + 15 a + 6\right)\cdot 19^{12} + \left(15 a^{2} + 15 a + 1\right)\cdot 19^{13} + \left(5 a^{2} + 7 a + 18\right)\cdot 19^{14} + \left(9 a^{2} + 11 a + 9\right)\cdot 19^{15} + \left(14 a^{2} + 12 a + 17\right)\cdot 19^{16} + \left(5 a^{2} + 16 a + 13\right)\cdot 19^{17} + \left(12 a^{2} + 11 a + 17\right)\cdot 19^{18} + \left(11 a^{2} + 15 a + 7\right)\cdot 19^{19} + \left(3 a^{2} + 18 a + 10\right)\cdot 19^{20} + \left(6 a^{2} + 18 a\right)\cdot 19^{21} +O\left(19^{ 22 }\right)$
$r_{ 6 }$ $=$ $ 11 a^{2} + 10 a + 4 + \left(16 a^{2} + 3 a + 1\right)\cdot 19 + \left(8 a^{2} + 9 a + 9\right)\cdot 19^{2} + \left(15 a^{2} + 2 a + 14\right)\cdot 19^{3} + \left(13 a^{2} + 17 a + 12\right)\cdot 19^{4} + \left(15 a^{2} + 15 a + 10\right)\cdot 19^{5} + \left(13 a^{2} + 16 a + 14\right)\cdot 19^{6} + \left(15 a^{2} + 9 a + 11\right)\cdot 19^{7} + \left(8 a^{2} + 3 a + 15\right)\cdot 19^{8} + \left(8 a^{2} + 5 a + 6\right)\cdot 19^{9} + \left(12 a^{2} + 5 a + 1\right)\cdot 19^{10} + \left(11 a^{2} + 14 a + 16\right)\cdot 19^{11} + \left(14 a^{2} + 12 a + 9\right)\cdot 19^{12} + \left(6 a^{2} + 13 a + 1\right)\cdot 19^{13} + \left(16 a^{2} + 16\right)\cdot 19^{14} + \left(9 a^{2} + a + 13\right)\cdot 19^{15} + \left(18 a^{2} + 13\right)\cdot 19^{16} + \left(2 a^{2} + 6 a + 9\right)\cdot 19^{17} + \left(7 a^{2} + 12 a + 17\right)\cdot 19^{18} + \left(16 a^{2} + 4 a + 14\right)\cdot 19^{19} + \left(3 a^{2} + 2\right)\cdot 19^{20} + \left(2 a^{2} + 15\right)\cdot 19^{21} +O\left(19^{ 22 }\right)$
$r_{ 7 }$ $=$ $ 4 a^{2} + a + 12 + \left(4 a^{2} + a + 9\right)\cdot 19 + \left(5 a^{2} + 17 a + 9\right)\cdot 19^{2} + \left(13 a^{2} + 13 a + 5\right)\cdot 19^{3} + \left(5 a^{2} + a + 14\right)\cdot 19^{4} + \left(6 a^{2} + 17 a + 7\right)\cdot 19^{5} + \left(5 a^{2} + 15 a + 8\right)\cdot 19^{6} + \left(11 a^{2} + 10 a + 2\right)\cdot 19^{7} + \left(7 a^{2} + 5 a\right)\cdot 19^{8} + \left(7 a^{2} + 13 a + 12\right)\cdot 19^{9} + \left(18 a^{2} + 2 a + 16\right)\cdot 19^{10} + \left(18 a + 5\right)\cdot 19^{11} + \left(12 a^{2} + 2 a + 18\right)\cdot 19^{12} + \left(10 a + 12\right)\cdot 19^{13} + \left(17 a^{2} + 4 a + 3\right)\cdot 19^{14} + \left(16 a^{2} + 6 a + 11\right)\cdot 19^{15} + \left(11 a^{2} + 17 a + 10\right)\cdot 19^{16} + 12 a^{2}19^{17} + \left(14 a^{2} + 4 a + 5\right)\cdot 19^{18} + \left(4 a^{2} + 6 a + 2\right)\cdot 19^{19} + \left(17 a^{2} + 3 a + 15\right)\cdot 19^{20} + \left(10 a^{2} + 7 a + 6\right)\cdot 19^{21} +O\left(19^{ 22 }\right)$
$r_{ 8 }$ $=$ $ 11 a^{2} + 13 a + 18 + \left(12 a^{2} + 13 a + 12\right)\cdot 19 + \left(6 a^{2} + 14 a\right)\cdot 19^{2} + \left(6 a + 9\right)\cdot 19^{3} + \left(15 a^{2} + 2 a + 7\right)\cdot 19^{4} + \left(10 a^{2} + 8 a + 13\right)\cdot 19^{5} + \left(10 a^{2} + 13 a + 9\right)\cdot 19^{6} + \left(10 a^{2} + 8 a\right)\cdot 19^{7} + \left(16 a^{2} + 15 a + 5\right)\cdot 19^{8} + \left(7 a^{2} + 2 a + 13\right)\cdot 19^{9} + \left(6 a^{2} + 3 a + 3\right)\cdot 19^{10} + \left(14 a^{2} + 7 a + 16\right)\cdot 19^{11} + \left(a^{2} + 9\right)\cdot 19^{12} + \left(3 a^{2} + 12 a\right)\cdot 19^{13} + \left(15 a^{2} + 6 a + 5\right)\cdot 19^{14} + \left(11 a^{2} + a + 10\right)\cdot 19^{15} + \left(11 a^{2} + 8 a + 3\right)\cdot 19^{16} + a\cdot 19^{17} + \left(11 a^{2} + 3 a + 8\right)\cdot 19^{18} + \left(2 a^{2} + 16 a + 15\right)\cdot 19^{19} + \left(17 a^{2} + 15 a + 14\right)\cdot 19^{20} + \left(a^{2} + 11 a + 1\right)\cdot 19^{21} +O\left(19^{ 22 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3)(2,8)(4,6)(5,7)$
$(1,4)(3,6)$
$(1,3)(4,6)$
$(1,6,4)(5,8,7)$
$(1,2)(3,5)(4,7)(6,8)$
$(1,6)(2,7)(3,4)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$6$
$3$$2$$(1,3)(2,8)(4,6)(5,7)$$-2$
$3$$2$$(1,6)(2,7)(3,4)(5,8)$$-2$
$3$$2$$(1,4)(2,5)(3,6)(7,8)$$-2$
$6$$2$$(1,4)(3,6)$$2$
$12$$2$$(1,2)(3,5)(4,7)(6,8)$$0$
$32$$3$$(3,4,6)(5,8,7)$$0$
$12$$4$$(1,2,6,7)(3,8,4,5)$$0$
$12$$4$$(1,2,4,7)(3,5,6,8)$$0$
$12$$4$$(1,8,4,7)(2,6,5,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.