Properties

Label 6.2e4_3e3_89e4.20t35.2
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{3} \cdot 89^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$27104648112= 2^{4} \cdot 3^{3} \cdot 89^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 6 x^{4} - 12 x^{3} + 14 x^{2} - 10 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: $ x^{2} + 96 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 34 a + 64 + \left(74 a + 61\right)\cdot 97 + \left(70 a + 24\right)\cdot 97^{2} + \left(10 a + 88\right)\cdot 97^{3} + \left(90 a + 69\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 74 + 72\cdot 97 + 88\cdot 97^{2} + 83\cdot 97^{3} + 14\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 88\cdot 97^{2} + 87\cdot 97^{3} + 19\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 88 a + 5 + \left(22 a + 11\right)\cdot 97 + \left(6 a + 91\right)\cdot 97^{2} + \left(70 a + 17\right)\cdot 97^{3} + \left(24 a + 41\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 63 a + 1 + \left(22 a + 5\right)\cdot 97 + \left(26 a + 21\right)\cdot 97^{2} + \left(86 a + 28\right)\cdot 97^{3} + \left(6 a + 52\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 93 + \left(74 a + 42\right)\cdot 97 + \left(90 a + 74\right)\cdot 97^{2} + \left(26 a + 81\right)\cdot 97^{3} + \left(72 a + 92\right)\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,3,4,6,5)$
$(1,3)(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,3)(2,4)(5,6)$ $0$
$15$ $2$ $(1,5)(4,6)$ $-2$
$20$ $3$ $(1,3,6)(2,4,5)$ $0$
$30$ $4$ $(1,6,5,4)$ $0$
$24$ $5$ $(1,4,3,2,6)$ $1$
$20$ $6$ $(1,2,3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.