Properties

Label 6.2e4_3e3_5e3_59e2.9t18.1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{4} \cdot 3^{3} \cdot 5^{3} \cdot 59^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$187974000= 2^{4} \cdot 3^{3} \cdot 5^{3} \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 7 x^{7} - 12 x^{6} + 13 x^{5} - 14 x^{4} + 7 x^{3} - 6 x^{2} + 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : D_{6} $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 13 a^{2} + 16 a + 9 + \left(14 a^{2} + 16 a + 15\right)\cdot 17 + \left(7 a^{2} + 11 a + 10\right)\cdot 17^{2} + \left(8 a^{2} + 5 a + 5\right)\cdot 17^{3} + \left(8 a^{2} + a + 11\right)\cdot 17^{4} + \left(4 a^{2} + a + 8\right)\cdot 17^{5} + \left(7 a^{2} + 10\right)\cdot 17^{6} + \left(2 a^{2} + 11 a + 1\right)\cdot 17^{7} + \left(10 a^{2} + 16 a + 1\right)\cdot 17^{8} + 6\cdot 17^{9} + \left(9 a^{2} + a\right)\cdot 17^{10} + \left(2 a^{2} + 9 a + 13\right)\cdot 17^{11} + \left(8 a^{2} + 16 a + 16\right)\cdot 17^{12} + \left(a^{2} + a\right)\cdot 17^{13} + \left(16 a^{2} + 16 a + 5\right)\cdot 17^{14} + \left(8 a^{2} + 15 a\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 16 + 11\cdot 17 + 8\cdot 17^{2} + 14\cdot 17^{4} + 4\cdot 17^{5} + 11\cdot 17^{6} + 2\cdot 17^{7} + 17^{8} + 12\cdot 17^{9} + 11\cdot 17^{10} + 11\cdot 17^{11} + 2\cdot 17^{13} + 10\cdot 17^{14} + 7\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 8 a^{2} + \left(14 a^{2} + 9 a + 4\right)\cdot 17 + \left(7 a^{2} + 10 a + 5\right)\cdot 17^{2} + \left(8 a^{2} + 6 a + 11\right)\cdot 17^{3} + \left(13 a^{2} + 8 a + 14\right)\cdot 17^{4} + \left(7 a^{2} + 11 a + 10\right)\cdot 17^{5} + \left(10 a^{2} + 3 a + 12\right)\cdot 17^{6} + \left(12 a^{2} + 16 a + 2\right)\cdot 17^{7} + \left(6 a^{2} + 9 a + 10\right)\cdot 17^{8} + \left(10 a^{2} + 13 a + 12\right)\cdot 17^{9} + \left(15 a^{2} + 7 a + 4\right)\cdot 17^{10} + \left(6 a^{2} + 2 a + 10\right)\cdot 17^{11} + \left(3 a^{2} + 13 a + 13\right)\cdot 17^{12} + \left(7 a^{2} + 6 a + 4\right)\cdot 17^{13} + \left(3 a^{2} + 11 a + 2\right)\cdot 17^{14} + \left(6 a^{2} + 14 a + 4\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 4 a^{2} + 12 a + 3 + \left(14 a^{2} + 6 a + 15\right)\cdot 17 + \left(13 a^{2} + 9 a + 14\right)\cdot 17^{2} + \left(3 a^{2} + 5 a + 13\right)\cdot 17^{3} + \left(6 a^{2} + 6 a + 9\right)\cdot 17^{4} + \left(12 a^{2} + 16 a + 2\right)\cdot 17^{5} + \left(10 a^{2} + 10 a + 7\right)\cdot 17^{6} + \left(2 a^{2} + 14 a + 7\right)\cdot 17^{7} + \left(a^{2} + 4 a + 6\right)\cdot 17^{8} + \left(15 a^{2} + 6 a + 4\right)\cdot 17^{9} + \left(7 a^{2} + 13 a + 5\right)\cdot 17^{10} + \left(2 a^{2} + 2 a + 7\right)\cdot 17^{11} + \left(9 a^{2} + 6 a\right)\cdot 17^{12} + \left(11 a^{2} + 5 a + 2\right)\cdot 17^{13} + \left(5 a^{2} + 16 a + 15\right)\cdot 17^{14} + \left(10 a^{2} + 16 a + 6\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 2 a^{2} + 14 a + 13 + \left(7 a + 5\right)\cdot 17 + \left(4 a^{2} + 11 a + 8\right)\cdot 17^{2} + \left(5 a^{2} + 2 a + 3\right)\cdot 17^{3} + \left(2 a^{2} + a + 7\right)\cdot 17^{4} + \left(14 a^{2} + 16 a + 9\right)\cdot 17^{5} + \left(4 a^{2} + 4 a + 14\right)\cdot 17^{6} + \left(3 a^{2} + 13 a + 7\right)\cdot 17^{7} + \left(16 a + 11\right)\cdot 17^{8} + \left(14 a^{2} + 10 a + 3\right)\cdot 17^{9} + \left(14 a^{2} + 8 a + 4\right)\cdot 17^{10} + \left(16 a^{2} + 6 a + 11\right)\cdot 17^{11} + \left(14 a^{2} + 13 a + 15\right)\cdot 17^{12} + \left(9 a^{2} + a\right)\cdot 17^{13} + \left(9 a^{2} + 5 a + 12\right)\cdot 17^{14} + \left(14 a^{2} + 9 a + 9\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 7 + 8\cdot 17 + 8\cdot 17^{2} + 2\cdot 17^{3} + 15\cdot 17^{4} + 9\cdot 17^{5} + 2\cdot 17^{6} + 13\cdot 17^{7} + 12\cdot 17^{8} + 17^{9} + 6\cdot 17^{10} + 13\cdot 17^{11} + 10\cdot 17^{12} + 12\cdot 17^{14} + 4\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 5 a + 15 + \left(5 a^{2} + a + 14\right)\cdot 17 + \left(12 a^{2} + 14 a + 13\right)\cdot 17^{2} + \left(4 a^{2} + 4 a + 8\right)\cdot 17^{3} + \left(14 a^{2} + 2 a + 9\right)\cdot 17^{4} + \left(13 a^{2} + 6 a + 3\right)\cdot 17^{5} + \left(12 a^{2} + 2 a + 14\right)\cdot 17^{6} + \left(a^{2} + 3 a + 6\right)\cdot 17^{7} + \left(9 a^{2} + 2 a\right)\cdot 17^{8} + \left(8 a^{2} + 14 a\right)\cdot 17^{9} + \left(10 a^{2} + 12 a + 7\right)\cdot 17^{10} + \left(7 a^{2} + 11 a + 16\right)\cdot 17^{11} + \left(4 a^{2} + 14 a + 2\right)\cdot 17^{12} + \left(15 a^{2} + 4 a + 10\right)\cdot 17^{13} + \left(7 a^{2} + 6 a + 16\right)\cdot 17^{14} + \left(2 a + 5\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 12 + 13\cdot 17 + 16\cdot 17^{2} + 13\cdot 17^{3} + 4\cdot 17^{4} + 2\cdot 17^{5} + 3\cdot 17^{6} + 17^{7} + 3\cdot 17^{8} + 3\cdot 17^{9} + 16\cdot 17^{10} + 8\cdot 17^{11} + 5\cdot 17^{12} + 14\cdot 17^{13} + 11\cdot 17^{14} + 4\cdot 17^{15} +O\left(17^{ 16 }\right)$
$r_{ 9 }$ $=$ $ 2 a^{2} + 4 a + 13 + \left(2 a^{2} + 9 a + 12\right)\cdot 17 + \left(5 a^{2} + 10 a + 14\right)\cdot 17^{2} + \left(3 a^{2} + 8 a + 7\right)\cdot 17^{3} + \left(6 a^{2} + 14 a + 15\right)\cdot 17^{4} + \left(15 a^{2} + 16 a + 15\right)\cdot 17^{5} + \left(4 a^{2} + 11 a + 8\right)\cdot 17^{6} + \left(11 a^{2} + 9 a + 7\right)\cdot 17^{7} + \left(6 a^{2} + 4\right)\cdot 17^{8} + \left(2 a^{2} + 5 a + 7\right)\cdot 17^{9} + \left(10 a^{2} + 7 a + 12\right)\cdot 17^{10} + \left(14 a^{2} + a + 9\right)\cdot 17^{11} + \left(10 a^{2} + 4 a + 1\right)\cdot 17^{12} + \left(5 a^{2} + 13 a + 15\right)\cdot 17^{13} + \left(8 a^{2} + 12 a + 16\right)\cdot 17^{14} + \left(10 a^{2} + 8 a + 6\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,8)(2,9)(5,6)$
$(1,9,5)(2,6,8)(3,7,4)$
$(1,8,3)(2,7,9)(4,5,6)$
$(1,5)(3,4)(6,8)$
$(1,5,9)(2,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,5)(3,4)(6,8)$ $0$
$9$ $2$ $(1,8)(2,9)(5,6)$ $2$
$9$ $2$ $(1,6)(2,9)(3,4)(5,8)$ $0$
$2$ $3$ $(1,9,5)(2,6,8)(3,7,4)$ $-3$
$6$ $3$ $(1,8,3)(2,7,9)(4,5,6)$ $0$
$6$ $3$ $(1,5,9)(3,7,4)$ $0$
$12$ $3$ $(1,2,7)(3,5,8)(4,9,6)$ $0$
$18$ $6$ $(1,6,3,5,8,4)(2,7,9)$ $0$
$18$ $6$ $(1,2,5,8,9,6)(3,7,4)$ $-1$
$18$ $6$ $(1,4,5,3,9,7)(2,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.