Properties

Label 6.2e4_3e3_31e4.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 2^{4} \cdot 3^{3} \cdot 31^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$398961072= 2^{4} \cdot 3^{3} \cdot 31^{4} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} + 4 x^{7} - 9 x^{6} + 34 x^{5} - 31 x^{4} + 39 x^{3} + 70 x^{2} + 4 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{3} + 6 x + 65 $
Roots:
$r_{ 1 }$ $=$ $ 47 a^{2} + 20 a + 66 + \left(7 a^{2} + 40 a + 58\right)\cdot 67 + \left(36 a^{2} + 12 a + 23\right)\cdot 67^{2} + \left(17 a^{2} + 31 a + 53\right)\cdot 67^{3} + \left(39 a^{2} + 26 a + 63\right)\cdot 67^{4} + \left(66 a^{2} + 64 a + 56\right)\cdot 67^{5} + \left(36 a^{2} + 37 a + 26\right)\cdot 67^{6} + \left(32 a^{2} + 15 a + 59\right)\cdot 67^{7} + \left(48 a^{2} + 32 a + 3\right)\cdot 67^{8} + \left(59 a^{2} + 46 a + 62\right)\cdot 67^{9} + \left(43 a^{2} + 50 a + 15\right)\cdot 67^{10} + \left(24 a^{2} + 35 a + 42\right)\cdot 67^{11} + \left(48 a^{2} + 12 a + 27\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 23 a^{2} + 44 a + 37 + \left(23 a^{2} + 28 a + 54\right)\cdot 67 + \left(14 a^{2} + 2 a + 3\right)\cdot 67^{2} + \left(54 a^{2} + 21 a + 66\right)\cdot 67^{3} + \left(54 a^{2} + 12 a + 58\right)\cdot 67^{4} + \left(25 a^{2} + 32 a + 27\right)\cdot 67^{5} + \left(a^{2} + 39 a + 18\right)\cdot 67^{6} + \left(35 a^{2} + 30 a + 2\right)\cdot 67^{7} + \left(46 a^{2} + 54 a + 63\right)\cdot 67^{8} + \left(32 a^{2} + 65 a + 20\right)\cdot 67^{9} + \left(34 a^{2} + 34 a + 45\right)\cdot 67^{10} + \left(33 a^{2} + 43 a + 10\right)\cdot 67^{11} + \left(66 a^{2} + 20 a + 33\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 16 + 15\cdot 67 + 48\cdot 67^{2} + 66\cdot 67^{3} + 51\cdot 67^{4} + 28\cdot 67^{5} + 3\cdot 67^{6} + 21\cdot 67^{7} + 23\cdot 67^{8} + 5\cdot 67^{9} + 33\cdot 67^{10} + 55\cdot 67^{11} + 11\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 52 a^{2} + 37 a + 33 + \left(51 a^{2} + 41 a + 46\right)\cdot 67 + \left(13 a^{2} + 28 a + 44\right)\cdot 67^{2} + \left(49 a^{2} + 11 a + 27\right)\cdot 67^{3} + \left(62 a^{2} + 62 a + 56\right)\cdot 67^{4} + \left(59 a^{2} + 27 a + 61\right)\cdot 67^{5} + \left(44 a^{2} + 46 a + 34\right)\cdot 67^{6} + \left(30 a^{2} + 50 a + 58\right)\cdot 67^{7} + \left(46 a^{2} + 25 a + 66\right)\cdot 67^{8} + \left(65 a^{2} + 20 a + 14\right)\cdot 67^{9} + \left(66 a^{2} + 29 a + 41\right)\cdot 67^{10} + \left(a^{2} + 17 a + 8\right)\cdot 67^{11} + \left(16 a^{2} + 41 a + 56\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 26 + 10\cdot 67 + 3\cdot 67^{2} + 36\cdot 67^{3} + 16\cdot 67^{4} + 5\cdot 67^{5} + 21\cdot 67^{6} + 28\cdot 67^{7} + 54\cdot 67^{8} + 50\cdot 67^{9} + 5\cdot 67^{10} + 21\cdot 67^{11} + 60\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 48 a^{2} + 29 a + 17 + \left(3 a^{2} + 58 a + 55\right)\cdot 67 + \left(2 a^{2} + 55 a + 64\right)\cdot 67^{2} + \left(46 a^{2} + 34 a + 14\right)\cdot 67^{3} + \left(14 a^{2} + 32 a + 65\right)\cdot 67^{4} + \left(60 a^{2} + 57 a + 62\right)\cdot 67^{5} + \left(9 a + 59\right)\cdot 67^{6} + \left(13 a^{2} + 10 a + 54\right)\cdot 67^{7} + \left(30 a^{2} + 50 a + 1\right)\cdot 67^{8} + \left(18 a^{2} + 32 a + 27\right)\cdot 67^{9} + \left(25 a^{2} + 16 a + 8\right)\cdot 67^{10} + \left(13 a^{2} + 11 a + 54\right)\cdot 67^{11} + \left(33 a^{2} + 45 a + 57\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 34 a^{2} + a + 28 + \left(11 a^{2} + 34 a + 19\right)\cdot 67 + \left(51 a^{2} + 49 a + 60\right)\cdot 67^{2} + \left(38 a^{2} + 20 a + 52\right)\cdot 67^{3} + \left(56 a^{2} + 39 a + 31\right)\cdot 67^{4} + \left(13 a^{2} + 48 a + 11\right)\cdot 67^{5} + \left(21 a^{2} + 10 a + 7\right)\cdot 67^{6} + \left(23 a^{2} + 6 a + 29\right)\cdot 67^{7} + \left(57 a^{2} + 58 a + 43\right)\cdot 67^{8} + \left(49 a^{2} + 13 a + 18\right)\cdot 67^{9} + \left(41 a^{2} + 21 a + 7\right)\cdot 67^{10} + \left(51 a^{2} + 38 a + 6\right)\cdot 67^{11} + \left(17 a^{2} + 47 a + 63\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 48 + 36\cdot 67 + 6\cdot 67^{2} + 53\cdot 67^{3} + 57\cdot 67^{4} + 55\cdot 67^{5} + 35\cdot 67^{6} + 20\cdot 67^{7} + 45\cdot 67^{8} + 11\cdot 67^{9} + 48\cdot 67^{10} + 23\cdot 67^{11} + 47\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 64 a^{2} + 3 a + \left(35 a^{2} + 65 a + 38\right)\cdot 67 + \left(16 a^{2} + 51 a + 12\right)\cdot 67^{2} + \left(62 a^{2} + 14 a + 31\right)\cdot 67^{3} + \left(39 a^{2} + 28 a + 66\right)\cdot 67^{4} + \left(41 a^{2} + 37 a + 23\right)\cdot 67^{5} + \left(28 a^{2} + 56 a + 60\right)\cdot 67^{6} + \left(66 a^{2} + 20 a + 60\right)\cdot 67^{7} + \left(38 a^{2} + 47 a + 32\right)\cdot 67^{8} + \left(41 a^{2} + 21 a + 56\right)\cdot 67^{9} + \left(55 a^{2} + 48 a + 62\right)\cdot 67^{10} + \left(8 a^{2} + 54 a + 45\right)\cdot 67^{11} + \left(19 a^{2} + 33 a + 44\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,9)(3,4)(5,6)(7,8)$
$(1,6,3)(2,4,5)(7,8,9)$
$(1,2,9)(3,8,5)$
$(3,5,8)(4,6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,8)(2,5)(3,9)(4,6)$ $0$
$2$ $3$ $(1,9,2)(3,8,5)(4,6,7)$ $-3$
$3$ $3$ $(1,2,9)(3,8,5)$ $0$
$3$ $3$ $(1,9,2)(3,5,8)$ $0$
$6$ $3$ $(1,6,3)(2,4,5)(7,8,9)$ $0$
$6$ $3$ $(1,3,6)(2,5,4)(7,9,8)$ $0$
$6$ $3$ $(1,4,3)(2,7,5)(6,8,9)$ $0$
$9$ $6$ $(1,5,9,8,2,3)(4,6)$ $0$
$9$ $6$ $(1,3,2,8,9,5)(4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.