Properties

Label 6.2e4_3e3_149e4.20t35.2c1
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{4} \cdot 3^{3} \cdot 149^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$212926061232= 2^{4} \cdot 3^{3} \cdot 149^{4} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} + 4 x^{3} + x^{2} + 3 x + 10 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 2 + 4\cdot 37 + 14\cdot 37^{2} + 28\cdot 37^{3} + 5\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 15 + \left(14 a + 23\right)\cdot 37 + \left(4 a + 24\right)\cdot 37^{2} + \left(33 a + 31\right)\cdot 37^{3} + \left(15 a + 19\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 12 a + 25 + \left(6 a + 16\right)\cdot 37 + \left(21 a + 3\right)\cdot 37^{2} + \left(30 a + 14\right)\cdot 37^{3} + \left(25 a + 14\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 28 + \left(22 a + 14\right)\cdot 37 + \left(32 a + 27\right)\cdot 37^{2} + \left(3 a + 11\right)\cdot 37^{3} + \left(21 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 22\cdot 37 + 33\cdot 37^{2} + 20\cdot 37^{3} + 7\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 36 + \left(30 a + 29\right)\cdot 37 + \left(15 a + 7\right)\cdot 37^{2} + \left(6 a + 4\right)\cdot 37^{3} + \left(11 a + 13\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,6)(4,5)$
$(1,4,5,6,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)(3,6)(4,5)$$0$
$15$$2$$(1,5)(2,4)$$-2$
$20$$3$$(1,2,5)(3,6,4)$$0$
$30$$4$$(1,6,4,5)$$0$
$24$$5$$(1,3,2,4,6)$$1$
$20$$6$$(1,3,2,6,5,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.