Properties

Label 6.2e4_23e3_61e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 2^{4} \cdot 23^{3} \cdot 61^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$44186845232= 2^{4} \cdot 23^{3} \cdot 61^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 2 x^{3} + 2 x^{2} - x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.23_61.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 + 12\cdot 29 + 29^{2} + 17\cdot 29^{3} + 10\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 6 + \left(27 a + 20\right)\cdot 29 + \left(16 a + 13\right)\cdot 29^{2} + \left(26 a + 28\right)\cdot 29^{3} + \left(28 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 13 + 19\cdot 29 + 2\cdot 29^{2} + 7\cdot 29^{3} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 10 + 28\cdot 29 + 26\cdot 29^{2} + 5\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 26 + \left(a + 6\right)\cdot 29 + \left(12 a + 13\right)\cdot 29^{2} + \left(2 a + 28\right)\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.