Properties

Label 6.2e4_17e3_113e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 2^{4} \cdot 17^{3} \cdot 113^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$113423247376= 2^{4} \cdot 17^{3} \cdot 113^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{3} - x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 509 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 46 + 224\cdot 509 + 396\cdot 509^{2} + 154\cdot 509^{3} + 48\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 173 + 8\cdot 509 + 7\cdot 509^{2} + 238\cdot 509^{3} + 113\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 205 + 327\cdot 509 + 399\cdot 509^{2} + 129\cdot 509^{3} + 291\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 242 + 186\cdot 509 + 473\cdot 509^{2} + 170\cdot 509^{3} + 104\cdot 509^{4} +O\left(509^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 352 + 271\cdot 509 + 250\cdot 509^{2} + 324\cdot 509^{3} + 460\cdot 509^{4} +O\left(509^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.