Properties

Label 6.2e4_15377e3.20t35.2
Dimension 6
Group $S_5$
Conductor $ 2^{4} \cdot 15377^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$58174790202128= 2^{4} \cdot 15377^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + x^{3} + 3 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 563 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 318 + 227\cdot 563 + 134\cdot 563^{2} + 32\cdot 563^{3} + 43\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 441 + 120\cdot 563 + 61\cdot 563^{2} + 449\cdot 563^{3} + 91\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 460 + 156\cdot 563 + 321\cdot 563^{2} + 68\cdot 563^{3} + 506\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 485 + 416\cdot 563 + 561\cdot 563^{2} + 525\cdot 563^{3} + 313\cdot 563^{4} +O\left(563^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 550 + 203\cdot 563 + 47\cdot 563^{2} + 50\cdot 563^{3} + 171\cdot 563^{4} +O\left(563^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.