Properties

Label 6.2e16_3e5_7e5.20t35.3c1
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{16} \cdot 3^{5} \cdot 7^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$267655643136= 2^{16} \cdot 3^{5} \cdot 7^{5} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 4 x^{3} + 7 x^{2} - 2 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.3_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 16 + \left(18 a + 15\right)\cdot 41 + \left(8 a + 6\right)\cdot 41^{2} + \left(5 a + 3\right)\cdot 41^{3} + \left(38 a + 14\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 4\cdot 41 + 41^{2} + 15\cdot 41^{3} + 12\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 28 + \left(5 a + 17\right)\cdot 41 + \left(26 a + 29\right)\cdot 41^{2} + \left(36 a + 28\right)\cdot 41^{3} + \left(8 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 + 10\cdot 41 + 11\cdot 41^{2} + 35\cdot 41^{3} + 6\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 29 a + 11 + \left(22 a + 17\right)\cdot 41 + \left(32 a + 13\right)\cdot 41^{2} + \left(35 a + 10\right)\cdot 41^{3} + 2 a\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 a + 38 + \left(35 a + 16\right)\cdot 41 + \left(14 a + 20\right)\cdot 41^{2} + \left(4 a + 30\right)\cdot 41^{3} + \left(32 a + 39\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,3,6,2,4)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)(3,6)(4,5)$$0$
$15$$2$$(2,4)(3,6)$$-2$
$20$$3$$(1,3,2)(4,5,6)$$0$
$30$$4$$(2,3,4,6)$$0$
$24$$5$$(1,6,5,2,4)$$1$
$20$$6$$(1,5,3,6,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.