Properties

Label 6.2e16_3e5_47e4.20t35.2c1
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{16} \cdot 3^{5} \cdot 47^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$77710130085888= 2^{16} \cdot 3^{5} \cdot 47^{4} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} + 3 x^{2} - 18 x + 18 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 a + 27 + \left(30 a + 22\right)\cdot 37 + \left(13 a + 10\right)\cdot 37^{2} + \left(12 a + 28\right)\cdot 37^{3} + \left(27 a + 2\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 16 + \left(6 a + 9\right)\cdot 37 + \left(23 a + 35\right)\cdot 37^{2} + \left(24 a + 26\right)\cdot 37^{3} + \left(9 a + 25\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 + 22\cdot 37 + 4\cdot 37^{2} + 19\cdot 37^{3} + 26\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 36 + \left(16 a + 17\right)\cdot 37 + \left(23 a + 33\right)\cdot 37^{2} + \left(30 a + 36\right)\cdot 37^{3} + \left(35 a + 34\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 28 a + 35 + \left(20 a + 36\right)\cdot 37 + \left(13 a + 36\right)\cdot 37^{2} + \left(6 a + 24\right)\cdot 37^{3} + \left(a + 36\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 + 37 + 27\cdot 37^{2} + 11\cdot 37^{3} + 21\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,3)(5,6)$
$(1,4,5,3,6,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,4)(2,3)(5,6)$$0$
$15$$2$$(1,4)(3,5)$$-2$
$20$$3$$(1,5,6)(2,4,3)$$0$
$30$$4$$(1,3,4,5)$$0$
$24$$5$$(2,5,3,6,4)$$1$
$20$$6$$(1,4,5,3,6,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.