Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 20.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{3} + 4 x + 64 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 30 a^{2} + 20 a + 15 + \left(55 a^{2} + 26 a + 30\right)\cdot 71 + \left(69 a^{2} + 27 a + 33\right)\cdot 71^{2} + \left(67 a^{2} + 19 a + 11\right)\cdot 71^{3} + \left(49 a^{2} + 50 a + 37\right)\cdot 71^{4} + \left(21 a^{2} + 27\right)\cdot 71^{5} + \left(69 a^{2} + 47 a + 65\right)\cdot 71^{6} + \left(23 a^{2} + 31 a + 65\right)\cdot 71^{7} + \left(34 a^{2} + 33 a + 3\right)\cdot 71^{8} + \left(45 a^{2} + 23 a + 61\right)\cdot 71^{9} + \left(64 a^{2} + 42 a + 20\right)\cdot 71^{10} + \left(70 a^{2} + 56 a + 19\right)\cdot 71^{11} + \left(7 a^{2} + 67 a + 29\right)\cdot 71^{12} + \left(9 a^{2} + 67 a + 37\right)\cdot 71^{13} + \left(47 a^{2} + 34 a + 59\right)\cdot 71^{14} + \left(13 a^{2} + 14 a + 31\right)\cdot 71^{15} + \left(50 a^{2} + 68 a + 31\right)\cdot 71^{16} + \left(35 a^{2} + 12 a + 18\right)\cdot 71^{17} + \left(40 a^{2} + 12 a + 18\right)\cdot 71^{18} + \left(30 a^{2} + 33 a + 48\right)\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 54 a^{2} + 48 a + 52 + \left(44 a^{2} + 9 a + 33\right)\cdot 71 + \left(21 a^{2} + 67 a + 57\right)\cdot 71^{2} + \left(7 a^{2} + 17 a + 15\right)\cdot 71^{3} + \left(66 a^{2} + 33 a + 32\right)\cdot 71^{4} + \left(61 a^{2} + 53 a + 12\right)\cdot 71^{5} + \left(21 a^{2} + 4 a + 26\right)\cdot 71^{6} + \left(5 a^{2} + 9 a + 70\right)\cdot 71^{7} + \left(56 a^{2} + 9 a + 23\right)\cdot 71^{8} + \left(9 a^{2} + 34 a + 40\right)\cdot 71^{9} + \left(32 a^{2} + 35 a + 50\right)\cdot 71^{10} + \left(64 a^{2} + 47 a + 53\right)\cdot 71^{11} + \left(25 a^{2} + 16 a + 6\right)\cdot 71^{12} + \left(44 a^{2} + 30 a + 46\right)\cdot 71^{13} + \left(3 a^{2} + 59 a + 46\right)\cdot 71^{14} + \left(55 a^{2} + 7 a + 33\right)\cdot 71^{15} + \left(38 a^{2} + 51 a + 55\right)\cdot 71^{16} + \left(16 a^{2} + 42 a + 6\right)\cdot 71^{17} + \left(60 a^{2} + 48 a + 30\right)\cdot 71^{18} + \left(69 a^{2} + 5 a + 36\right)\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 10 a^{2} + 2 a + 9 + \left(38 a^{2} + 44 a + 55\right)\cdot 71 + \left(13 a^{2} + 19 a + 1\right)\cdot 71^{2} + \left(48 a^{2} + 51 a + 6\right)\cdot 71^{3} + \left(41 a^{2} + 42 a + 15\right)\cdot 71^{4} + \left(8 a^{2} + 26 a + 16\right)\cdot 71^{5} + \left(3 a^{2} + 26 a + 7\right)\cdot 71^{6} + \left(25 a^{2} + 63 a + 45\right)\cdot 71^{7} + \left(39 a^{2} + 24 a + 64\right)\cdot 71^{8} + \left(67 a^{2} + 4 a + 48\right)\cdot 71^{9} + \left(7 a^{2} + 61 a + 11\right)\cdot 71^{10} + \left(15 a^{2} + 68 a + 36\right)\cdot 71^{11} + \left(22 a^{2} + 67 a + 43\right)\cdot 71^{12} + \left(58 a^{2} + 24 a + 26\right)\cdot 71^{13} + \left(19 a^{2} + 31 a + 10\right)\cdot 71^{14} + \left(37 a^{2} + 50 a\right)\cdot 71^{15} + \left(a^{2} + 18 a + 20\right)\cdot 71^{16} + \left(41 a^{2} + 36 a + 56\right)\cdot 71^{17} + \left(51 a^{2} + 40 a + 47\right)\cdot 71^{18} + \left(51 a^{2} + 42 a + 33\right)\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 22 + 13\cdot 71 + 55\cdot 71^{2} + 2\cdot 71^{3} + 11\cdot 71^{4} + 41\cdot 71^{5} + 11\cdot 71^{6} + 53\cdot 71^{7} + 32\cdot 71^{8} + 15\cdot 71^{9} + 29\cdot 71^{10} + 16\cdot 71^{11} + 45\cdot 71^{12} + 21\cdot 71^{13} + 67\cdot 71^{14} + 26\cdot 71^{15} + 8\cdot 71^{16} + 65\cdot 71^{17} + 10\cdot 71^{18} + 26\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 24 + 28\cdot 71 + 48\cdot 71^{2} + 20\cdot 71^{3} + 70\cdot 71^{4} + 10\cdot 71^{5} + 17\cdot 71^{6} + 56\cdot 71^{7} + 38\cdot 71^{8} + 51\cdot 71^{9} + 33\cdot 71^{10} + 66\cdot 71^{11} + 46\cdot 71^{12} + 13\cdot 71^{13} + 20\cdot 71^{14} + 42\cdot 71^{15} + 16\cdot 71^{16} + 64\cdot 71^{17} + 10\cdot 71^{18} + 26\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 31 a^{2} + 49 a + 65 + \left(48 a^{2} + 58\right)\cdot 71 + \left(58 a^{2} + 24 a + 3\right)\cdot 71^{2} + \left(25 a^{2} + 41\right)\cdot 71^{3} + \left(50 a^{2} + 49 a + 14\right)\cdot 71^{4} + \left(40 a^{2} + 43 a + 7\right)\cdot 71^{5} + \left(69 a^{2} + 68 a + 66\right)\cdot 71^{6} + \left(21 a^{2} + 46 a + 36\right)\cdot 71^{7} + \left(68 a^{2} + 12 a + 23\right)\cdot 71^{8} + \left(28 a^{2} + 43 a + 64\right)\cdot 71^{9} + \left(69 a^{2} + 38 a + 9\right)\cdot 71^{10} + \left(55 a^{2} + 16 a + 3\right)\cdot 71^{11} + \left(40 a^{2} + 6 a + 22\right)\cdot 71^{12} + \left(3 a^{2} + 49 a + 46\right)\cdot 71^{13} + \left(4 a^{2} + 4 a + 15\right)\cdot 71^{14} + \left(20 a^{2} + 6 a + 25\right)\cdot 71^{15} + \left(19 a^{2} + 55 a + 67\right)\cdot 71^{16} + \left(65 a^{2} + 21 a + 49\right)\cdot 71^{17} + \left(49 a^{2} + 18 a + 19\right)\cdot 71^{18} + \left(59 a^{2} + 66 a + 31\right)\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 28 a^{2} + 70 a + 30 + \left(58 a^{2} + 2 a + 46\right)\cdot 71 + \left(23 a^{2} + 3 a + 39\right)\cdot 71^{2} + \left(38 a^{2} + 42 a + 27\right)\cdot 71^{3} + \left(70 a^{2} + 14 a + 20\right)\cdot 71^{4} + \left(43 a^{2} + 44 a + 59\right)\cdot 71^{5} + \left(62 a^{2} + 56 a + 63\right)\cdot 71^{6} + \left(5 a^{2} + 30 a\right)\cdot 71^{7} + \left(63 a^{2} + 17 a + 19\right)\cdot 71^{8} + \left(67 a + 40\right)\cdot 71^{9} + \left(4 a^{2} + 28 a + 46\right)\cdot 71^{10} + \left(64 a^{2} + 68 a + 52\right)\cdot 71^{11} + \left(40 a^{2} + a + 46\right)\cdot 71^{12} + \left(36 a^{2} + 14 a + 1\right)\cdot 71^{13} + \left(25 a^{2} + 70 a + 34\right)\cdot 71^{14} + \left(8 a^{2} + 30 a + 27\right)\cdot 71^{15} + \left(5 a^{2} + 3 a + 60\right)\cdot 71^{16} + \left(26 a^{2} + 12 a + 55\right)\cdot 71^{17} + \left(54 a^{2} + 54 a + 61\right)\cdot 71^{18} + \left(2 a^{2} + 32 a + 46\right)\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 60 a^{2} + 24 a + 68 + \left(38 a^{2} + 58 a + 17\right)\cdot 71 + \left(25 a^{2} + 44\right)\cdot 71^{2} + \left(25 a^{2} + 11 a + 16\right)\cdot 71^{3} + \left(5 a^{2} + 23 a + 12\right)\cdot 71^{4} + \left(36 a^{2} + 44 a + 38\right)\cdot 71^{5} + \left(57 a^{2} + 9 a + 26\right)\cdot 71^{6} + \left(59 a^{2} + 31 a + 26\right)\cdot 71^{7} + \left(22 a^{2} + 44 a + 6\right)\cdot 71^{8} + \left(60 a^{2} + 40 a + 33\right)\cdot 71^{9} + \left(34 a^{2} + 6 a + 10\right)\cdot 71^{10} + \left(13 a^{2} + 26 a + 36\right)\cdot 71^{11} + \left(4 a^{2} + 52 a + 43\right)\cdot 71^{12} + \left(61 a^{2} + 26 a + 19\right)\cdot 71^{13} + \left(41 a^{2} + 12 a + 30\right)\cdot 71^{14} + \left(7 a^{2} + 32 a + 25\right)\cdot 71^{15} + \left(27 a^{2} + 16 a + 24\right)\cdot 71^{16} + \left(28 a^{2} + 16 a + 38\right)\cdot 71^{17} + \left(27 a^{2} + 39 a + 13\right)\cdot 71^{18} + \left(69 a^{2} + 32 a + 35\right)\cdot 71^{19} +O\left(71^{ 20 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(1,4)(2,8)(3,6)(5,7)$ |
| $(1,4)(3,6)$ |
| $(1,6)(3,4)$ |
| $(1,4)(7,8)$ |
| $(1,7)(2,6)(3,5)(4,8)$ |
| $(1,4,6)(5,7,8)$ |
| $(1,4)(2,5)(3,6)(7,8)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character value |
| $1$ | $1$ | $()$ | $6$ |
| $3$ | $2$ | $(1,4)(2,5)(3,6)(7,8)$ | $-2$ |
| $4$ | $2$ | $(1,2)(3,7)(4,5)(6,8)$ | $0$ |
| $6$ | $2$ | $(1,4)(2,8)(3,6)(5,7)$ | $2$ |
| $6$ | $2$ | $(2,5)(7,8)$ | $-2$ |
| $12$ | $2$ | $(1,7)(2,6)(3,5)(4,8)$ | $2$ |
| $12$ | $2$ | $(2,7)(4,6)$ | $0$ |
| $32$ | $3$ | $(3,4,6)(5,8,7)$ | $0$ |
| $12$ | $4$ | $(1,8,6,2)(3,7,4,5)$ | $-2$ |
| $12$ | $4$ | $(1,3,4,6)(2,7,5,8)$ | $0$ |
| $12$ | $4$ | $(1,2,6,8)(3,7,4,5)$ | $0$ |
| $24$ | $4$ | $(1,5,6,8)(2,3,7,4)$ | $0$ |
| $24$ | $4$ | $(2,7,5,8)(3,6)$ | $0$ |
| $32$ | $6$ | $(1,2)(3,8,4,7,6,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.