Properties

Label 6.2e12_5e7_7e4.20t35.3c1
Dimension 6
Group $S_5$
Conductor $ 2^{12} \cdot 5^{7} \cdot 7^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$768320000000= 2^{12} \cdot 5^{7} \cdot 7^{4} $
Artin number field: Splitting field of $f= x^{5} - 40 x^{2} + 20 x - 16 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 15\cdot 73 + 46\cdot 73^{2} + 52\cdot 73^{3} + 10\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 + 27\cdot 73 + 31\cdot 73^{2} + 58\cdot 73^{3} + 30\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 70 a + 50 + \left(68 a + 59\right)\cdot 73 + \left(8 a + 33\right)\cdot 73^{2} + \left(54 a + 15\right)\cdot 73^{3} + \left(54 a + 34\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 41 + \left(4 a + 50\right)\cdot 73 + \left(64 a + 64\right)\cdot 73^{2} + \left(18 a + 22\right)\cdot 73^{3} + \left(18 a + 71\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 + 66\cdot 73 + 42\cdot 73^{2} + 69\cdot 73^{3} + 71\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.