Properties

Label 6.2e12_5e3_43e4.20t35.2c1
Dimension 6
Group $\PGL(2,5)$
Conductor $ 2^{12} \cdot 5^{3} \cdot 43^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$\PGL(2,5)$
Conductor:$1750426112000= 2^{12} \cdot 5^{3} \cdot 43^{4} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 8 x^{3} - 9 x^{2} - 8 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 74 a + 48 + \left(20 a + 6\right)\cdot 101 + \left(26 a + 45\right)\cdot 101^{2} + \left(73 a + 43\right)\cdot 101^{3} + \left(6 a + 21\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 27 a + 41 + \left(80 a + 15\right)\cdot 101 + \left(74 a + 28\right)\cdot 101^{2} + \left(27 a + 7\right)\cdot 101^{3} + \left(94 a + 76\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 50 a + 72 + \left(33 a + 14\right)\cdot 101 + \left(40 a + 32\right)\cdot 101^{2} + \left(27 a + 33\right)\cdot 101^{3} + \left(82 a + 60\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 49\cdot 101 + 64\cdot 101^{2} + 60\cdot 101^{3} + 54\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 a + 70 + \left(67 a + 98\right)\cdot 101 + \left(60 a + 58\right)\cdot 101^{2} + \left(73 a + 1\right)\cdot 101^{3} + \left(18 a + 59\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 46 + 17\cdot 101 + 74\cdot 101^{2} + 55\cdot 101^{3} + 31\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,2,4,5,6)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)(3,6)(4,5)$$0$
$15$$2$$(1,4)(2,5)$$-2$
$20$$3$$(1,5,2)(3,6,4)$$0$
$30$$4$$(2,6,4,5)$$0$
$24$$5$$(1,4,6,2,3)$$1$
$20$$6$$(1,6,5,4,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.