Properties

Label 6.2e12_3e5_11e5.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 2^{12} \cdot 3^{5} \cdot 11^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$160298569728= 2^{12} \cdot 3^{5} \cdot 11^{5} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 2 x^{3} + 2 x^{2} + 11 x + 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.3_11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 37\cdot 43 + 35\cdot 43^{2} + 5\cdot 43^{3} + 13\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 23 a + 12 + 39 a\cdot 43 + \left(7 a + 22\right)\cdot 43^{2} + \left(2 a + 12\right)\cdot 43^{3} + \left(20 a + 35\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 2\cdot 43 + 39\cdot 43^{2} + 35\cdot 43^{3} + 23\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 35 + \left(3 a + 16\right)\cdot 43 + \left(35 a + 33\right)\cdot 43^{2} + \left(40 a + 6\right)\cdot 43^{3} + \left(22 a + 10\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 24 + 29\cdot 43 + 41\cdot 43^{2} + 24\cdot 43^{3} + 3\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.