Properties

Label 6.2e12_3e4_5e7.20t35.1
Dimension 6
Group $S_5$
Conductor $ 2^{12} \cdot 3^{4} \cdot 5^{7}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$25920000000= 2^{12} \cdot 3^{4} \cdot 5^{7} $
Artin number field: Splitting field of $f= x^{5} - 30 x - 60 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: $ x^{2} + 49 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 17 + 10\cdot 53 + 23\cdot 53^{2} + 44\cdot 53^{3} + 3\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 28 + \left(49 a + 16\right)\cdot 53 + \left(49 a + 15\right)\cdot 53^{2} + \left(49 a + 50\right)\cdot 53^{3} + \left(48 a + 26\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 a + 46 + \left(3 a + 24\right)\cdot 53 + \left(3 a + 6\right)\cdot 53^{2} + \left(3 a + 41\right)\cdot 53^{3} + \left(4 a + 13\right)\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 5 + 10\cdot 53 + 34\cdot 53^{2} + 23\cdot 53^{3} + 23\cdot 53^{4} +O\left(53^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 + 44\cdot 53 + 26\cdot 53^{2} + 52\cdot 53^{3} + 37\cdot 53^{4} +O\left(53^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.