Properties

Label 6.2e11_101e4.18t51.1
Dimension 6
Group $C_3^2 : D_{6} $
Conductor $ 2^{11} \cdot 101^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : D_{6} $
Conductor:$213115701248= 2^{11} \cdot 101^{4} $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 11 x^{7} - 22 x^{6} + 35 x^{5} - 44 x^{4} + 45 x^{3} - 34 x^{2} + 18 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 18T51
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 211 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 211 }$: $ x^{3} + 2 x + 209 $
Roots:
$r_{ 1 }$ $=$ $ 49 + 198\cdot 211 + 10\cdot 211^{2} + 177\cdot 211^{3} + 101\cdot 211^{4} + 56\cdot 211^{5} + 81\cdot 211^{6} + 64\cdot 211^{7} + 7\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 104 + 28\cdot 211 + 158\cdot 211^{2} + 154\cdot 211^{3} + 43\cdot 211^{4} + 19\cdot 211^{5} + 54\cdot 211^{6} + 16\cdot 211^{7} + 92\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 141 + 106\cdot 211 + 134\cdot 211^{2} + 118\cdot 211^{3} + 25\cdot 211^{4} + 176\cdot 211^{5} + 106\cdot 211^{6} + 207\cdot 211^{7} + 126\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 17 a^{2} + 44 a + 109 + \left(157 a^{2} + 4 a + 142\right)\cdot 211 + \left(72 a^{2} + 168 a + 24\right)\cdot 211^{2} + \left(207 a^{2} + 160 a + 25\right)\cdot 211^{3} + \left(99 a^{2} + 7 a + 116\right)\cdot 211^{4} + \left(111 a^{2} + 26 a + 202\right)\cdot 211^{5} + \left(2 a^{2} + 157 a + 160\right)\cdot 211^{6} + \left(18 a^{2} + 193 a + 187\right)\cdot 211^{7} + \left(109 a^{2} + 8 a + 50\right)\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 22 a^{2} + 161 a + 198 + \left(67 a^{2} + 164 a + 185\right)\cdot 211 + \left(61 a^{2} + 84 a + 52\right)\cdot 211^{2} + \left(181 a^{2} + 32 a + 202\right)\cdot 211^{3} + \left(16 a^{2} + 183 a + 52\right)\cdot 211^{4} + \left(6 a^{2} + 63 a + 81\right)\cdot 211^{5} + \left(176 a^{2} + 120 a + 207\right)\cdot 211^{6} + \left(177 a^{2} + 86 a + 117\right)\cdot 211^{7} + \left(4 a^{2} + 153 a + 25\right)\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 49 a^{2} + 122 a + 23 + \left(104 a^{2} + 132 a + 165\right)\cdot 211 + \left(37 a^{2} + 114 a + 161\right)\cdot 211^{2} + \left(127 a^{2} + 90 a + 59\right)\cdot 211^{3} + \left(76 a^{2} + 190 a + 62\right)\cdot 211^{4} + \left(193 a^{2} + 150 a + 190\right)\cdot 211^{5} + \left(192 a^{2} + 72 a + 18\right)\cdot 211^{6} + \left(158 a^{2} + 22 a + 163\right)\cdot 211^{7} + \left(60 a^{2} + 127 a + 29\right)\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 7 }$ $=$ $ 76 a^{2} + 67 a + 47 + \left(49 a^{2} + 66 a + 69\right)\cdot 211 + \left(144 a^{2} + 26 a + 190\right)\cdot 211^{2} + \left(131 a^{2} + 16 a + 64\right)\cdot 211^{3} + \left(17 a^{2} + 55 a + 6\right)\cdot 211^{4} + \left(29 a^{2} + 76 a + 163\right)\cdot 211^{5} + \left(210 a^{2} + 39 a + 15\right)\cdot 211^{6} + \left(67 a^{2} + 91 a + 184\right)\cdot 211^{7} + \left(142 a^{2} + 188 a + 24\right)\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 8 }$ $=$ $ 118 a^{2} + 100 a + 103 + \left(4 a^{2} + 140 a + 9\right)\cdot 211 + \left(205 a^{2} + 16 a + 201\right)\cdot 211^{2} + \left(82 a^{2} + 34 a + 210\right)\cdot 211^{3} + \left(93 a^{2} + 148 a + 36\right)\cdot 211^{4} + \left(70 a^{2} + 108 a + 7\right)\cdot 211^{5} + \left(209 a^{2} + 14 a + 85\right)\cdot 211^{6} + \left(124 a^{2} + 137 a + 119\right)\cdot 211^{7} + \left(170 a^{2} + 13 a + 62\right)\cdot 211^{8} +O\left(211^{ 9 }\right)$
$r_{ 9 }$ $=$ $ 140 a^{2} + 139 a + 74 + \left(39 a^{2} + 124 a + 149\right)\cdot 211 + \left(112 a^{2} + 11 a + 120\right)\cdot 211^{2} + \left(113 a^{2} + 88 a + 41\right)\cdot 211^{3} + \left(117 a^{2} + 48 a + 187\right)\cdot 211^{4} + \left(11 a^{2} + 207 a + 158\right)\cdot 211^{5} + \left(53 a^{2} + 17 a + 113\right)\cdot 211^{6} + \left(85 a^{2} + 102 a + 205\right)\cdot 211^{7} + \left(145 a^{2} + 141 a + 1\right)\cdot 211^{8} +O\left(211^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,3)(4,8,7)(5,6,9)$
$(1,3)(4,7)(5,6)$
$(4,7,8)(5,6,9)$
$(4,6)(5,7)(8,9)$
$(1,8,9)(2,7,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,3)(6,9)(7,8)$ $0$
$9$ $2$ $(4,6)(5,7)(8,9)$ $-2$
$9$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $0$
$2$ $3$ $(1,2,3)(4,8,7)(5,6,9)$ $-3$
$6$ $3$ $(1,9,7)(2,5,4)(3,6,8)$ $0$
$6$ $3$ $(1,3,2)(4,8,7)$ $0$
$12$ $3$ $(1,8,9)(2,7,5)(3,4,6)$ $0$
$18$ $6$ $(1,8,9,3,7,6)(2,4,5)$ $0$
$18$ $6$ $(1,2,3)(4,9,7,6,8,5)$ $1$
$18$ $6$ $(1,8,3,7,2,4)(5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.