Properties

Label 6.3356857344.8t47.a
Dimension $6$
Group $S_4\wr C_2$
Conductor $3356857344$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$6$
Group:$S_4\wr C_2$
Conductor:\(3356857344\)\(\medspace = 2^{10} \cdot 3 \cdot 103^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.2.1383025225728.1
Galois orbit size: $1$
Smallest permutation container: $S_4\wr C_2$
Parity: odd
Projective image: $S_4\wr C_2$
Projective field: Galois closure of 8.2.1383025225728.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: \( x^{3} + x + 40 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 20 a^{2} + 33 a + 32 + \left(17 a^{2} + 28 a + 26\right)\cdot 43 + \left(33 a^{2} + 18 a + 27\right)\cdot 43^{2} + \left(18 a^{2} + 35 a + 30\right)\cdot 43^{3} + \left(20 a^{2} + 33 a + 40\right)\cdot 43^{4} + \left(16 a^{2} + 6 a + 21\right)\cdot 43^{5} + \left(27 a^{2} + 14 a + 25\right)\cdot 43^{6} + \left(14 a^{2} + 18 a + 18\right)\cdot 43^{7} + \left(a^{2} + 41 a + 10\right)\cdot 43^{8} + \left(38 a^{2} + 27 a + 36\right)\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 32 + 40\cdot 43 + 26\cdot 43^{2} + 31\cdot 43^{3} + 4\cdot 43^{4} + 10\cdot 43^{5} + 21\cdot 43^{6} + 16\cdot 43^{7} + 14\cdot 43^{8} + 10\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 35 a^{2} + 33 a + 42 + \left(42 a^{2} + 27 a + 14\right)\cdot 43 + \left(15 a^{2} + 7 a + 30\right)\cdot 43^{2} + \left(36 a^{2} + 20 a + 13\right)\cdot 43^{3} + \left(23 a^{2} + 26 a + 14\right)\cdot 43^{4} + \left(17 a^{2} + 12 a + 8\right)\cdot 43^{5} + \left(7 a^{2} + 41 a + 12\right)\cdot 43^{6} + \left(29 a^{2} + 28\right)\cdot 43^{7} + \left(39 a^{2} + 10 a + 21\right)\cdot 43^{8} + \left(11 a^{2} + 41 a + 4\right)\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 35 a^{2} + 9 a + 34 + \left(38 a^{2} + 31 a + 40\right)\cdot 43 + \left(38 a^{2} + 5 a + 39\right)\cdot 43^{2} + \left(14 a + 17\right)\cdot 43^{3} + \left(3 a^{2} + 19 a + 40\right)\cdot 43^{4} + \left(15 a^{2} + 13 a + 37\right)\cdot 43^{5} + \left(37 a^{2} + 15 a + 40\right)\cdot 43^{6} + \left(17 a^{2} + 17 a + 10\right)\cdot 43^{7} + \left(7 a^{2} + 17 a + 35\right)\cdot 43^{8} + \left(15 a^{2} + 29 a + 20\right)\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 16 a^{2} + 29 a + 7 + \left(6 a^{2} + 40 a + 19\right)\cdot 43 + \left(20 a^{2} + 13 a + 27\right)\cdot 43^{2} + \left(6 a^{2} + 24 a + 21\right)\cdot 43^{3} + \left(5 a^{2} + 33 a + 27\right)\cdot 43^{4} + \left(12 a^{2} + 31 a + 21\right)\cdot 43^{5} + \left(41 a^{2} + 25 a\right)\cdot 43^{6} + \left(42 a^{2} + 22 a + 42\right)\cdot 43^{7} + \left(28 a^{2} + 41 a + 20\right)\cdot 43^{8} + \left(11 a^{2} + 40 a + 18\right)\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 13 + 41\cdot 43 + 34\cdot 43^{3} + 13\cdot 43^{4} + 2\cdot 43^{5} + 38\cdot 43^{6} + 2\cdot 43^{7} + 38\cdot 43^{8} + 10\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 35 a^{2} + 5 a + 34 + \left(40 a^{2} + 14 a + 27\right)\cdot 43 + \left(26 a^{2} + 23 a + 17\right)\cdot 43^{2} + \left(35 a^{2} + 4 a + 12\right)\cdot 43^{3} + \left(34 a^{2} + 33 a + 4\right)\cdot 43^{4} + \left(15 a^{2} + 40 a + 24\right)\cdot 43^{5} + \left(7 a^{2} + a + 6\right)\cdot 43^{6} + \left(25 a^{2} + 3 a + 30\right)\cdot 43^{7} + \left(6 a^{2} + 27 a + 34\right)\cdot 43^{8} + \left(16 a^{2} + 15 a + 35\right)\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 31 a^{2} + 20 a + 25 + \left(25 a^{2} + 29 a + 3\right)\cdot 43 + \left(36 a^{2} + 16 a + 1\right)\cdot 43^{2} + \left(30 a^{2} + 30 a + 10\right)\cdot 43^{3} + \left(41 a^{2} + 25 a + 26\right)\cdot 43^{4} + \left(8 a^{2} + 23 a + 2\right)\cdot 43^{5} + \left(8 a^{2} + 30 a + 27\right)\cdot 43^{6} + \left(42 a^{2} + 23 a + 22\right)\cdot 43^{7} + \left(a^{2} + 34 a + 39\right)\cdot 43^{8} + \left(36 a^{2} + 16 a + 34\right)\cdot 43^{9} +O(43^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2,3,8)$
$(1,2)$
$(1,4)(2,5)(3,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$6$ $2$ $(1,3)(2,8)$ $2$
$9$ $2$ $(1,3)(2,8)(4,6)(5,7)$ $-2$
$12$ $2$ $(1,2)$ $4$
$24$ $2$ $(1,4)(2,5)(3,6)(7,8)$ $0$
$36$ $2$ $(1,2)(4,5)$ $2$
$36$ $2$ $(1,2)(4,6)(5,7)$ $0$
$16$ $3$ $(1,3,8)$ $3$
$64$ $3$ $(1,3,8)(4,6,7)$ $0$
$12$ $4$ $(1,2,3,8)$ $2$
$36$ $4$ $(1,2,3,8)(4,5,6,7)$ $-2$
$36$ $4$ $(1,3)(2,8)(4,5,6,7)$ $-2$
$72$ $4$ $(1,6,3,4)(2,7,8,5)$ $0$
$72$ $4$ $(1,2)(4,5,6,7)$ $0$
$144$ $4$ $(1,5,2,4)(3,6)(7,8)$ $0$
$48$ $6$ $(1,8,3)(4,6)(5,7)$ $-1$
$96$ $6$ $(1,3,8)(4,5)$ $1$
$192$ $6$ $(1,6,3,7,8,4)(2,5)$ $0$
$144$ $8$ $(1,5,2,6,3,7,8,4)$ $0$
$96$ $12$ $(1,3,8)(4,5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.