Properties

Label 6.2e10_1787e5_11393e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 2^{10} \cdot 1787^{5} \cdot 11393^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$3581897930504746165247987685524149709824= 2^{10} \cdot 1787^{5} \cdot 11393^{5} $
Artin number field: Splitting field of $f= x^{7} - 7 x^{5} - x^{4} + 12 x^{3} + 2 x^{2} - 4 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 38\cdot 71 + 53\cdot 71^{2} + 56\cdot 71^{3} + 55\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 a + 69 + \left(69 a + 50\right)\cdot 71 + \left(34 a + 62\right)\cdot 71^{2} + \left(22 a + 30\right)\cdot 71^{3} + \left(2 a + 69\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 51 a + 55 + \left(34 a + 38\right)\cdot 71 + \left(28 a + 5\right)\cdot 71^{2} + \left(22 a + 45\right)\cdot 71^{3} + \left(11 a + 29\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 55 + 62\cdot 71 + \left(12 a + 23\right)\cdot 71^{2} + \left(44 a + 57\right)\cdot 71^{3} + \left(26 a + 54\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 15 + \left(36 a + 57\right)\cdot 71 + \left(42 a + 27\right)\cdot 71^{2} + \left(48 a + 61\right)\cdot 71^{3} + \left(59 a + 29\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 16 a + 37 + \left(a + 64\right)\cdot 71 + \left(36 a + 62\right)\cdot 71^{2} + \left(48 a + 40\right)\cdot 71^{3} + \left(68 a + 51\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 50 a + 26 + \left(70 a + 42\right)\cdot 71 + \left(58 a + 47\right)\cdot 71^{2} + \left(26 a + 62\right)\cdot 71^{3} + \left(44 a + 63\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.