Properties

Label 6.27551316672.18t311.a
Dimension $6$
Group $S_3\wr S_3$
Conductor $27551316672$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$6$
Group:$S_3\wr S_3$
Conductor:\(27551316672\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 11^{6} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 9.1.164627620608.1
Galois orbit size: $1$
Smallest permutation container: 18T311
Parity: odd
Projective image: $S_3\wr S_3$
Projective field: Galois closure of 9.1.164627620608.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 97 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 97 }$: \( x^{3} + 9x + 92 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 91 a^{2} + 87 a + 56 + \left(87 a^{2} + 55 a + 75\right)\cdot 97 + \left(45 a^{2} + 53 a + 64\right)\cdot 97^{2} + \left(17 a^{2} + 61 a + 28\right)\cdot 97^{3} + \left(82 a^{2} + 16 a + 90\right)\cdot 97^{4} + \left(76 a^{2} + 9 a + 4\right)\cdot 97^{5} + \left(55 a^{2} + 43 a + 58\right)\cdot 97^{6} + \left(12 a^{2} + 65 a + 88\right)\cdot 97^{7} + \left(39 a^{2} + 84 a + 72\right)\cdot 97^{8} + \left(95 a^{2} + 4 a + 25\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 44 a^{2} + 87 a + 72 + \left(56 a^{2} + 94 a + 37\right)\cdot 97 + \left(39 a^{2} + 89 a + 27\right)\cdot 97^{2} + \left(87 a^{2} + 39 a + 9\right)\cdot 97^{3} + \left(89 a^{2} + 40 a + 49\right)\cdot 97^{4} + \left(35 a^{2} + 79 a + 56\right)\cdot 97^{5} + \left(32 a^{2} + 42 a + 61\right)\cdot 97^{6} + \left(56 a^{2} + 76 a + 20\right)\cdot 97^{7} + \left(65 a^{2} + 83 a + 67\right)\cdot 97^{8} + \left(86 a^{2} + 95 a + 68\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 a^{2} + 93 a + 13 + \left(94 a^{2} + 51 a + 70\right)\cdot 97 + \left(78 a^{2} + 90 a + 69\right)\cdot 97^{2} + \left(37 a^{2} + 76 a + 2\right)\cdot 97^{3} + \left(29 a^{2} + 59 a + 74\right)\cdot 97^{4} + \left(82 a^{2} + 65 a + 43\right)\cdot 97^{5} + \left(78 a^{2} + 83 a + 49\right)\cdot 97^{6} + \left(86 a^{2} + 22 a + 9\right)\cdot 97^{7} + \left(34 a^{2} + 7 a + 77\right)\cdot 97^{8} + \left(81 a^{2} + 63 a + 36\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 69 a^{2} + 43 a + 94 + \left(13 a^{2} + 17 a + 26\right)\cdot 97 + \left(22 a^{2} + 85 a + 36\right)\cdot 97^{2} + \left(45 a^{2} + 48 a + 54\right)\cdot 97^{3} + \left(81 a^{2} + 70 a + 88\right)\cdot 97^{4} + \left(12 a^{2} + 32 a + 77\right)\cdot 97^{5} + \left(39 a^{2} + 22 a + 29\right)\cdot 97^{6} + \left(86 a^{2} + 77 a + 14\right)\cdot 97^{7} + \left(44 a^{2} + 84 a + 46\right)\cdot 97^{8} + \left(5 a^{2} + 81 a + 28\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 35 a^{2} + 83 a + 11 + \left(49 a^{2} + 79 a + 38\right)\cdot 97 + \left(47 a^{2} + 72 a + 74\right)\cdot 97^{2} + \left(18 a^{2} + 23 a + 34\right)\cdot 97^{3} + \left(27 a^{2} + 64 a + 51\right)\cdot 97^{4} + \left(11 a^{2} + 8 a + 96\right)\cdot 97^{5} + \left(55 a^{2} + 60 a + 53\right)\cdot 97^{6} + \left(78 a^{2} + 53 a + 96\right)\cdot 97^{7} + \left(48 a^{2} + 77 a + 33\right)\cdot 97^{8} + \left(25 a^{2} + 77 a + 91\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 68 a^{2} + 96 a + 88 + \left(7 a^{2} + 35 a + 87\right)\cdot 97 + \left(72 a^{2} + 52 a + 44\right)\cdot 97^{2} + \left(36 a^{2} + 47 a + 3\right)\cdot 97^{3} + \left(23 a^{2} + 9 a + 31\right)\cdot 97^{4} + \left(69 a^{2} + 30 a + 28\right)\cdot 97^{5} + \left(26 a^{2} + 68 a + 52\right)\cdot 97^{6} + \left(34 a^{2} + 77 a + 89\right)\cdot 97^{7} + \left(45 a^{2} + 70 a + 48\right)\cdot 97^{8} + \left(44 a^{2} + 82 a + 68\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 35 a^{2} + 14 a + 18 + \left(43 a^{2} + 47 a + 56\right)\cdot 97 + \left(75 a^{2} + 13 a + 48\right)\cdot 97^{2} + \left(68 a^{2} + 77 a + 91\right)\cdot 97^{3} + \left(74 a^{2} + 93 a + 54\right)\cdot 97^{4} + \left(75 a^{2} + 48 a + 4\right)\cdot 97^{5} + \left(82 a^{2} + 67 a + 73\right)\cdot 97^{6} + \left(50 a^{2} + 94 a + 84\right)\cdot 97^{7} + \left(93 a^{2} + 5 a + 40\right)\cdot 97^{8} + \left(25 a^{2} + 35 a + 92\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 68 a^{2} + 24 a + 15 + \left(56 a^{2} + 58 a + 82\right)\cdot 97 + \left(3 a^{2} + 67 a + 4\right)\cdot 97^{2} + \left(61 a^{2} + 11 a + 96\right)\cdot 97^{3} + \left(84 a^{2} + 16 a + 7\right)\cdot 97^{4} + \left(8 a^{2} + 79 a + 82\right)\cdot 97^{5} + \left(83 a^{2} + 90 a + 27\right)\cdot 97^{6} + \left(5 a^{2} + 74 a + 48\right)\cdot 97^{7} + \left(9 a^{2} + 31 a + 86\right)\cdot 97^{8} + \left(73 a^{2} + 14 a + 85\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 57 a^{2} + 55 a + 22 + \left(75 a^{2} + 43 a + 10\right)\cdot 97 + \left(2 a^{2} + 56 a + 17\right)\cdot 97^{2} + \left(15 a^{2} + 67\right)\cdot 97^{3} + \left(89 a^{2} + 17 a + 37\right)\cdot 97^{4} + \left(14 a^{2} + 34 a + 90\right)\cdot 97^{5} + \left(31 a^{2} + 6 a + 78\right)\cdot 97^{6} + \left(73 a^{2} + 39 a + 32\right)\cdot 97^{7} + \left(6 a^{2} + 38 a + 11\right)\cdot 97^{8} + \left(47 a^{2} + 29 a + 84\right)\cdot 97^{9} +O(97^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,2,9)$
$(1,2)$
$(6,7,8)$
$(1,3,6)(2,4,7)(5,8,9)$
$(3,4,5)$
$(1,3)(2,4)(5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,2)$ $-4$
$18$ $2$ $(1,3)(2,4)(5,9)$ $2$
$27$ $2$ $(1,2)(3,4)(6,7)$ $0$
$27$ $2$ $(1,2)(3,4)$ $2$
$54$ $2$ $(1,2)(3,6)(4,7)(5,8)$ $0$
$6$ $3$ $(6,7,8)$ $3$
$8$ $3$ $(1,2,9)(3,4,5)(6,7,8)$ $-3$
$12$ $3$ $(3,4,5)(6,7,8)$ $0$
$72$ $3$ $(1,3,6)(2,4,7)(5,8,9)$ $0$
$54$ $4$ $(1,4,2,3)(5,9)$ $-2$
$162$ $4$ $(1,7,2,6)(4,5)(8,9)$ $0$
$36$ $6$ $(1,3)(2,4)(5,9)(6,7,8)$ $-1$
$36$ $6$ $(1,6,2,7,9,8)$ $2$
$36$ $6$ $(1,2)(6,7,8)$ $-1$
$36$ $6$ $(1,2)(3,4,5)(6,7,8)$ $2$
$54$ $6$ $(1,2)(3,4)(6,8,7)$ $-1$
$72$ $6$ $(1,3,2,4,9,5)(6,7,8)$ $-1$
$108$ $6$ $(1,2)(3,6,4,7,5,8)$ $0$
$216$ $6$ $(1,4,7,2,3,6)(5,8,9)$ $0$
$144$ $9$ $(1,3,6,2,4,7,9,5,8)$ $0$
$108$ $12$ $(1,4,2,3)(5,9)(6,7,8)$ $1$
The blue line marks the conjugacy class containing complex conjugation.