Properties

Label 6.23e3_43e4.9t10.1
Dimension 6
Group $(C_9:C_3):C_2$
Conductor $ 23^{3} \cdot 43^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$(C_9:C_3):C_2$
Conductor:$41596551767= 23^{3} \cdot 43^{4} $
Artin number field: Splitting field of $f= x^{9} - x^{8} + 5 x^{7} + 9 x^{6} - 46 x^{5} + 153 x^{4} - 262 x^{3} + 363 x^{2} - 274 x + 167 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(C_9:C_3):C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{3} + 3 x + 99 $
Roots:
$r_{ 1 }$ $=$ $ 53 + 43\cdot 101 + 63\cdot 101^{2} + 42\cdot 101^{3} + 48\cdot 101^{4} + 74\cdot 101^{5} + 74\cdot 101^{6} + 15\cdot 101^{7} + 13\cdot 101^{8} + 63\cdot 101^{9} + 94\cdot 101^{10} + 11\cdot 101^{11} + 10\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 23 a^{2} + 57 a + 95 + \left(75 a^{2} + 9 a + 43\right)\cdot 101 + \left(69 a^{2} + a + 10\right)\cdot 101^{2} + \left(61 a^{2} + 24 a + 78\right)\cdot 101^{3} + \left(100 a^{2} + 60 a + 17\right)\cdot 101^{4} + \left(a^{2} + 46 a + 55\right)\cdot 101^{5} + \left(12 a^{2} + 31 a + 23\right)\cdot 101^{6} + \left(91 a^{2} + 22 a + 1\right)\cdot 101^{7} + \left(80 a^{2} + 28 a + 95\right)\cdot 101^{8} + \left(34 a^{2} + 86 a + 85\right)\cdot 101^{9} + \left(55 a^{2} + 63 a + 2\right)\cdot 101^{10} + \left(18 a^{2} + 93 a + 54\right)\cdot 101^{11} + \left(46 a^{2} + 79 a + 94\right)\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 18 a^{2} + 22 a + 31 + \left(99 a^{2} + 74 a + 67\right)\cdot 101 + \left(98 a^{2} + 62 a + 27\right)\cdot 101^{2} + \left(14 a^{2} + 79 a + 26\right)\cdot 101^{3} + \left(60 a^{2} + 11 a + 9\right)\cdot 101^{4} + \left(46 a^{2} + 37 a + 95\right)\cdot 101^{5} + \left(70 a^{2} + 38 a + 81\right)\cdot 101^{6} + \left(95 a^{2} + 16 a + 11\right)\cdot 101^{7} + \left(12 a^{2} + 17 a + 37\right)\cdot 101^{8} + \left(59 a^{2} + 25 a + 68\right)\cdot 101^{9} + \left(67 a^{2} + 17 a + 32\right)\cdot 101^{10} + \left(25 a^{2} + 54 a + 69\right)\cdot 101^{11} + \left(64 a^{2} + 36 a + 4\right)\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 21 a^{2} + 45 a + 91 + \left(18 a^{2} + 43 a + 30\right)\cdot 101 + \left(100 a^{2} + 85 a + 71\right)\cdot 101^{2} + \left(27 a^{2} + 48 a + 10\right)\cdot 101^{3} + \left(57 a^{2} + 18 a + 32\right)\cdot 101^{4} + \left(77 a^{2} + 98 a + 4\right)\cdot 101^{5} + \left(5 a^{2} + 62 a + 11\right)\cdot 101^{6} + \left(33 a^{2} + 7 a + 87\right)\cdot 101^{7} + \left(71 a^{2} + 54 a + 75\right)\cdot 101^{8} + \left(15 a^{2} + 25 a + 47\right)\cdot 101^{9} + \left(52 a^{2} + 79 a + 97\right)\cdot 101^{10} + \left(66 a^{2} + 99 a + 48\right)\cdot 101^{11} + \left(31 a^{2} + 73 a + 65\right)\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 78 a^{2} + 51 a + 50 + \left(67 a^{2} + 9 a + 4\right)\cdot 101 + \left(70 a^{2} + 16 a + 72\right)\cdot 101^{2} + \left(78 a^{2} + 36 a + 52\right)\cdot 101^{3} + \left(95 a^{2} + 18 a + 80\right)\cdot 101^{4} + \left(62 a^{2} + 12 a + 26\right)\cdot 101^{5} + \left(76 a^{2} + 3 a + 94\right)\cdot 101^{6} + \left(52 a^{2} + 88 a + 26\right)\cdot 101^{7} + \left(95 a^{2} + 65 a\right)\cdot 101^{8} + \left(41 a^{2} + 56 a + 34\right)\cdot 101^{9} + \left(89 a^{2} + 73 a + 76\right)\cdot 101^{10} + \left(30 a^{2} + 26 a + 79\right)\cdot 101^{11} + \left(77 a^{2} + 33 a + 30\right)\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 3 + 97\cdot 101 + 34\cdot 101^{2} + 64\cdot 101^{3} + 17\cdot 101^{4} + 31\cdot 101^{5} + 92\cdot 101^{6} + 59\cdot 101^{7} + 83\cdot 101^{8} + 8\cdot 101^{9} + 17\cdot 101^{10} + 80\cdot 101^{11} + 38\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 7 }$ $=$ $ 5 a^{2} + 28 a + 5 + \left(35 a^{2} + 17 a + 40\right)\cdot 101 + \left(32 a^{2} + 22 a + 96\right)\cdot 101^{2} + \left(7 a^{2} + 86 a + 10\right)\cdot 101^{3} + \left(46 a^{2} + 70 a + 82\right)\cdot 101^{4} + \left(92 a^{2} + 51 a + 85\right)\cdot 101^{5} + \left(54 a^{2} + 59 a + 50\right)\cdot 101^{6} + \left(53 a^{2} + 97 a + 28\right)\cdot 101^{7} + \left(93 a^{2} + 17 a + 97\right)\cdot 101^{8} + \left(100 a^{2} + 19 a + 50\right)\cdot 101^{9} + \left(44 a^{2} + 10 a + 88\right)\cdot 101^{10} + \left(44 a^{2} + 20 a + 5\right)\cdot 101^{11} + \left(60 a^{2} + 31 a + 98\right)\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 8 }$ $=$ $ 57 a^{2} + 100 a + 62 + \left(7 a^{2} + 47 a + 9\right)\cdot 101 + \left(32 a^{2} + 14 a + 36\right)\cdot 101^{2} + \left(11 a^{2} + 28 a + 78\right)\cdot 101^{3} + \left(44 a^{2} + 22 a + 5\right)\cdot 101^{4} + \left(21 a^{2} + 57 a + 94\right)\cdot 101^{5} + \left(83 a^{2} + 6 a + 64\right)\cdot 101^{6} + \left(77 a^{2} + 71 a + 75\right)\cdot 101^{7} + \left(49 a^{2} + 18 a + 32\right)\cdot 101^{8} + \left(50 a^{2} + 90 a + 16\right)\cdot 101^{9} + \left(94 a^{2} + 58 a + 81\right)\cdot 101^{10} + \left(15 a^{2} + 8 a + 48\right)\cdot 101^{11} + \left(23 a^{2} + 48 a + 48\right)\cdot 101^{12} +O\left(101^{ 13 }\right)$
$r_{ 9 }$ $=$ $ 15 + 67\cdot 101 + 92\cdot 101^{2} + 39\cdot 101^{3} + 9\cdot 101^{4} + 38\cdot 101^{5} + 11\cdot 101^{6} + 97\cdot 101^{7} + 69\cdot 101^{8} + 28\cdot 101^{9} + 14\cdot 101^{10} + 5\cdot 101^{11} + 13\cdot 101^{12} +O\left(101^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,3,9,8,7,6,2,5)$
$(1,6,9)(2,8,4)(3,5,7)$
$(2,3)(4,5)(6,9)(7,8)$
$(2,4,8)(3,5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(2,3)(4,5)(6,9)(7,8)$ $0$
$2$ $3$ $(1,9,6)(2,4,8)(3,7,5)$ $-3$
$3$ $3$ $(1,6,9)(2,4,8)$ $0$
$3$ $3$ $(1,9,6)(2,8,4)$ $0$
$9$ $6$ $(1,8,6,2,9,4)(3,7)$ $0$
$9$ $6$ $(1,4,9,2,6,8)(3,7)$ $0$
$6$ $9$ $(1,4,3,9,8,7,6,2,5)$ $0$
$6$ $9$ $(1,8,3,9,2,7,6,4,5)$ $0$
$6$ $9$ $(1,3,2,6,5,8,9,7,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.