Properties

Label 6.23339e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 23339^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$12712961507219= 23339^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 337 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 14 + 240\cdot 337 + 231\cdot 337^{2} + 234\cdot 337^{3} + 190\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 17 + 172\cdot 337 + 42\cdot 337^{2} + 18\cdot 337^{3} + 286\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 180 + 52\cdot 337 + 192\cdot 337^{2} + 200\cdot 337^{3} + 336\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 203 + 332\cdot 337 + 260\cdot 337^{2} + 4\cdot 337^{3} + 51\cdot 337^{4} +O\left(337^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 261 + 213\cdot 337 + 283\cdot 337^{2} + 215\cdot 337^{3} + 146\cdot 337^{4} +O\left(337^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.