Properties

Label 6.21191e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 21191^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$9515998270871= 21191^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{2} - 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 257 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 112\cdot 257 + 39\cdot 257^{2} + 171\cdot 257^{3} + 199\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 20 + 213\cdot 257 + 152\cdot 257^{2} + 58\cdot 257^{3} + 44\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 106\cdot 257 + 180\cdot 257^{2} + 38\cdot 257^{3} + 134\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 181 + 87\cdot 257 + 92\cdot 257^{2} + 133\cdot 257^{3} + 165\cdot 257^{4} +O\left(257^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 253 + 251\cdot 257 + 48\cdot 257^{2} + 112\cdot 257^{3} + 227\cdot 257^{4} +O\left(257^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.