Properties

Label 6.19e4_139e3.9t13.1
Dimension 6
Group $C_3^2 : C_6$
Conductor $ 19^{4} \cdot 139^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$C_3^2 : C_6$
Conductor:$349992553699= 19^{4} \cdot 139^{3} $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + 10 x^{7} - 19 x^{6} - 16 x^{5} + 79 x^{4} - 96 x^{3} + 67 x^{2} + 50 x + 12 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2 : S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 19 + 26\cdot 41 + 18\cdot 41^{2} + 31\cdot 41^{3} + 17\cdot 41^{4} + 39\cdot 41^{5} + 32\cdot 41^{6} + 5\cdot 41^{7} + 30\cdot 41^{8} + 34\cdot 41^{9} + 18\cdot 41^{10} + 13\cdot 41^{11} + 36\cdot 41^{12} + 28\cdot 41^{13} + 4\cdot 41^{14} + 20\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 17 a^{2} + 15 a + 9 + \left(a^{2} + 4 a + 21\right)\cdot 41 + \left(38 a^{2} + 8 a + 26\right)\cdot 41^{2} + \left(23 a^{2} + 13 a + 22\right)\cdot 41^{3} + \left(16 a^{2} + 24 a + 17\right)\cdot 41^{4} + \left(5 a^{2} + 29 a + 37\right)\cdot 41^{5} + \left(24 a^{2} + 20 a + 8\right)\cdot 41^{6} + \left(32 a^{2} + 31 a + 35\right)\cdot 41^{7} + \left(22 a^{2} + 14 a + 12\right)\cdot 41^{8} + \left(12 a^{2} + 37\right)\cdot 41^{9} + \left(12 a^{2} + 6 a + 19\right)\cdot 41^{10} + \left(23 a^{2} + 30 a + 28\right)\cdot 41^{11} + \left(28 a^{2} + 27 a + 37\right)\cdot 41^{12} + \left(22 a^{2} + 18 a + 5\right)\cdot 41^{13} + \left(12 a^{2} + 7 a + 18\right)\cdot 41^{14} + \left(27 a^{2} + 9 a + 37\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 33 + 27\cdot 41 + 26\cdot 41^{2} + 19\cdot 41^{4} + 25\cdot 41^{5} + 31\cdot 41^{6} + 15\cdot 41^{7} + 8\cdot 41^{8} + 36\cdot 41^{9} + 9\cdot 41^{10} + 33\cdot 41^{11} + 20\cdot 41^{12} + 4\cdot 41^{13} + 23\cdot 41^{14} + 6\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 22 + 8\cdot 41 + 9\cdot 41^{2} + 15\cdot 41^{3} + 27\cdot 41^{4} + 8\cdot 41^{5} + 35\cdot 41^{6} + 32\cdot 41^{7} + 14\cdot 41^{8} + 33\cdot 41^{9} + 29\cdot 41^{10} + 15\cdot 41^{11} + 23\cdot 41^{13} + 32\cdot 41^{14} + 31\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 29 a^{2} + 3 a + 17 + \left(21 a^{2} + 39 a + 7\right)\cdot 41 + \left(21 a^{2} + 29\right)\cdot 41^{2} + \left(8 a^{2} + 16 a + 39\right)\cdot 41^{3} + \left(40 a^{2} + 33 a + 5\right)\cdot 41^{4} + \left(11 a^{2} + 8 a + 28\right)\cdot 41^{5} + \left(17 a^{2} + 20 a + 31\right)\cdot 41^{6} + \left(4 a^{2} + 5 a + 2\right)\cdot 41^{7} + \left(25 a^{2} + 39 a + 28\right)\cdot 41^{8} + \left(29 a^{2} + 6 a + 7\right)\cdot 41^{9} + \left(14 a^{2} + 25 a + 35\right)\cdot 41^{10} + \left(30 a + 26\right)\cdot 41^{11} + \left(38 a^{2} + 31 a + 16\right)\cdot 41^{12} + \left(40 a^{2} + 16 a + 4\right)\cdot 41^{13} + \left(21 a^{2} + 22 a + 38\right)\cdot 41^{14} + \left(4 a^{2} + 18 a + 35\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 15 a^{2} + 3 a + 2 + \left(33 a^{2} + 29 a + 22\right)\cdot 41 + \left(16 a^{2} + 11 a + 5\right)\cdot 41^{2} + \left(31 a^{2} + 8 a + 12\right)\cdot 41^{3} + \left(26 a^{2} + 18 a + 17\right)\cdot 41^{4} + \left(23 a^{2} + 26 a + 39\right)\cdot 41^{5} + \left(35 a^{2} + 27 a + 24\right)\cdot 41^{6} + \left(3 a^{2} + 17 a + 25\right)\cdot 41^{7} + \left(14 a^{2} + 30 a + 7\right)\cdot 41^{8} + \left(2 a^{2} + 20 a + 6\right)\cdot 41^{9} + \left(30 a^{2} + 19 a + 16\right)\cdot 41^{10} + \left(22 a^{2} + 12 a + 22\right)\cdot 41^{11} + \left(22 a^{2} + 16 a + 4\right)\cdot 41^{12} + \left(34 a^{2} + 14 a + 27\right)\cdot 41^{13} + \left(17 a^{2} + 17 a + 36\right)\cdot 41^{14} + \left(30 a^{2} + 7 a + 8\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 7 }$ $=$ $ 11 a^{2} + 17 a + 13 + \left(15 a^{2} + 18 a + 37\right)\cdot 41 + \left(39 a^{2} + 13 a + 6\right)\cdot 41^{2} + \left(22 a^{2} + 2 a + 20\right)\cdot 41^{3} + \left(29 a^{2} + 20 a + 5\right)\cdot 41^{4} + \left(24 a^{2} + 10 a + 40\right)\cdot 41^{5} + \left(6 a^{2} + 39 a + 32\right)\cdot 41^{6} + \left(23 a^{2} + 23 a + 24\right)\cdot 41^{7} + \left(9 a^{2} + 28 a + 4\right)\cdot 41^{8} + \left(18 a^{2} + 34 a + 3\right)\cdot 41^{9} + \left(39 a^{2} + 3 a + 36\right)\cdot 41^{10} + \left(12 a^{2} + 37 a + 15\right)\cdot 41^{11} + \left(12 a^{2} + 22 a + 11\right)\cdot 41^{12} + \left(31 a^{2} + 14 a + 11\right)\cdot 41^{13} + \left(10 a^{2} + 12 a + 18\right)\cdot 41^{14} + \left(a^{2} + 36 a + 30\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 8 }$ $=$ $ 15 a^{2} + 21 a + 2 + \left(33 a^{2} + 34 a + 22\right)\cdot 41 + \left(25 a^{2} + 15 a + 11\right)\cdot 41^{2} + \left(27 a^{2} + 30 a + 23\right)\cdot 41^{3} + \left(25 a^{2} + 2 a + 16\right)\cdot 41^{4} + \left(33 a^{2} + 4 a + 32\right)\cdot 41^{5} + \left(39 a^{2} + 15 a + 27\right)\cdot 41^{6} + \left(13 a^{2} + 40 a + 18\right)\cdot 41^{7} + \left(17 a^{2} + 22 a + 23\right)\cdot 41^{8} + \left(20 a^{2} + 26 a + 4\right)\cdot 41^{9} + \left(12 a^{2} + 17 a + 18\right)\cdot 41^{10} + \left(5 a^{2} + 32 a + 24\right)\cdot 41^{11} + \left(6 a^{2} + a + 34\right)\cdot 41^{12} + \left(16 a^{2} + 12 a + 14\right)\cdot 41^{13} + \left(12 a^{2} + 11 a + 19\right)\cdot 41^{14} + \left(9 a^{2} + 38 a + 8\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$
$r_{ 9 }$ $=$ $ 36 a^{2} + 23 a + 8 + \left(17 a^{2} + 38 a + 32\right)\cdot 41 + \left(22 a^{2} + 31 a + 29\right)\cdot 41^{2} + \left(8 a^{2} + 11 a + 39\right)\cdot 41^{3} + \left(25 a^{2} + 24 a + 36\right)\cdot 41^{4} + \left(23 a^{2} + 2 a + 35\right)\cdot 41^{5} + \left(40 a^{2} + 19\right)\cdot 41^{6} + \left(3 a^{2} + 4 a + 2\right)\cdot 41^{7} + \left(34 a^{2} + 28 a + 34\right)\cdot 41^{8} + \left(39 a^{2} + 33 a\right)\cdot 41^{9} + \left(13 a^{2} + 9 a + 21\right)\cdot 41^{10} + \left(17 a^{2} + 21 a + 24\right)\cdot 41^{11} + \left(15 a^{2} + 22 a + 1\right)\cdot 41^{12} + \left(18 a^{2} + 5 a + 3\right)\cdot 41^{13} + \left(6 a^{2} + 11 a + 14\right)\cdot 41^{14} + \left(9 a^{2} + 13 a + 25\right)\cdot 41^{15} +O\left(41^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,6)(3,4)(5,8)(7,9)$
$(2,5,9)(6,8,7)$
$(1,4,3)(2,5,9)(6,7,8)$
$(1,6,5)(2,3,8)(4,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$9$ $2$ $(1,9)(2,3)(4,5)(6,8)$ $0$
$2$ $3$ $(1,4,3)(2,5,9)(6,7,8)$ $-3$
$3$ $3$ $(1,4,3)(2,9,5)$ $0$
$3$ $3$ $(1,3,4)(2,5,9)$ $0$
$6$ $3$ $(1,6,5)(2,3,8)(4,7,9)$ $0$
$6$ $3$ $(1,5,6)(2,8,3)(4,9,7)$ $0$
$6$ $3$ $(1,8,5)(2,3,7)(4,6,9)$ $0$
$9$ $6$ $(1,2,4,9,3,5)(6,8)$ $0$
$9$ $6$ $(1,5,3,9,4,2)(6,8)$ $0$
The blue line marks the conjugacy class containing complex conjugation.