Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 37 a + 11 + \left(52 a + 51\right)\cdot 67 + \left(a + 63\right)\cdot 67^{2} + \left(31 a + 51\right)\cdot 67^{3} + 43\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 34 a + 41 + \left(44 a + 28\right)\cdot 67 + \left(12 a + 3\right)\cdot 67^{2} + \left(18 a + 16\right)\cdot 67^{3} + \left(36 a + 60\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 14 + 59\cdot 67 + 38\cdot 67^{2} + 16\cdot 67^{3} + 29\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 30 a + 25 + \left(14 a + 23\right)\cdot 67 + \left(65 a + 18\right)\cdot 67^{2} + \left(35 a + 40\right)\cdot 67^{3} + \left(66 a + 14\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 33 a + 43 + \left(22 a + 38\right)\cdot 67 + \left(54 a + 9\right)\cdot 67^{2} + \left(48 a + 9\right)\cdot 67^{3} + \left(30 a + 53\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $6$ |
| $10$ | $2$ | $(1,2)$ | $0$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $20$ | $3$ | $(1,2,3)$ | $0$ |
| $30$ | $4$ | $(1,2,3,4)$ | $0$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $1$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.