Properties

Label 6.191e5_601e5_607e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 191^{5} \cdot 601^{5} \cdot 607^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$1642414050326165950922835951385800514457= 191^{5} \cdot 601^{5} \cdot 607^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 13 x^{4} - 2 x^{3} - 9 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 313 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 313 }$: $ x^{2} + 310 x + 10 $
Roots:
$r_{ 1 }$ $=$ $ 195 a + 251 + \left(136 a + 74\right)\cdot 313 + \left(259 a + 150\right)\cdot 313^{2} + \left(146 a + 303\right)\cdot 313^{3} + \left(38 a + 232\right)\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 264 + 13\cdot 313 + 308\cdot 313^{2} + 50\cdot 313^{3} + 44\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 30 a + 33 + \left(4 a + 93\right)\cdot 313 + \left(17 a + 176\right)\cdot 313^{2} + \left(167 a + 280\right)\cdot 313^{3} + \left(77 a + 10\right)\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 249 a + 283 + \left(151 a + 92\right)\cdot 313 + \left(179 a + 77\right)\cdot 313^{2} + \left(178 a + 288\right)\cdot 313^{3} + \left(110 a + 109\right)\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 118 a + 210 + \left(176 a + 289\right)\cdot 313 + \left(53 a + 165\right)\cdot 313^{2} + \left(166 a + 171\right)\cdot 313^{3} + \left(274 a + 201\right)\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 a + 91 + \left(161 a + 299\right)\cdot 313 + \left(133 a + 150\right)\cdot 313^{2} + \left(134 a + 18\right)\cdot 313^{3} + \left(202 a + 263\right)\cdot 313^{4} +O\left(313^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 283 a + 123 + \left(308 a + 75\right)\cdot 313 + \left(295 a + 223\right)\cdot 313^{2} + \left(145 a + 138\right)\cdot 313^{3} + \left(235 a + 76\right)\cdot 313^{4} +O\left(313^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.