Properties

Label 6.17e3_439e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 17^{3} \cdot 439^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$415662001847= 17^{3} \cdot 439^{3} $
Artin number field: Splitting field of $f= x^{5} - 2 x^{4} + x^{3} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 11\cdot 41 + 12\cdot 41^{2} + 37\cdot 41^{3} + 34\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 8 + \left(14 a + 2\right)\cdot 41 + \left(38 a + 36\right)\cdot 41^{2} + \left(a + 38\right)\cdot 41^{3} + \left(5 a + 30\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 a + 29 + \left(26 a + 37\right)\cdot 41 + \left(2 a + 13\right)\cdot 41^{2} + \left(39 a + 6\right)\cdot 41^{3} + \left(35 a + 3\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 28 + \left(13 a + 23\right)\cdot 41 + \left(33 a + 7\right)\cdot 41^{2} + \left(35 a + 24\right)\cdot 41^{3} + \left(21 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 35 + \left(27 a + 6\right)\cdot 41 + \left(7 a + 12\right)\cdot 41^{2} + \left(5 a + 16\right)\cdot 41^{3} + \left(19 a + 21\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.