Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 127 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 127 }$: $ x^{2} + 126 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 15 a + 12 + \left(19 a + 37\right)\cdot 127 + \left(105 a + 23\right)\cdot 127^{2} + \left(105 a + 40\right)\cdot 127^{3} + \left(17 a + 102\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 14 + 27\cdot 127 + 65\cdot 127^{2} + 20\cdot 127^{3} + 13\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 112 a + 27 + \left(107 a + 41\right)\cdot 127 + \left(21 a + 109\right)\cdot 127^{2} + \left(21 a + 40\right)\cdot 127^{3} + \left(109 a + 14\right)\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 18 + 22\cdot 127 + 12\cdot 127^{2} + 9\cdot 127^{3} + 91\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 56 + 126\cdot 127 + 43\cdot 127^{2} + 16\cdot 127^{3} + 33\cdot 127^{4} +O\left(127^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$6$ |
| $10$ |
$2$ |
$(1,2)$ |
$0$ |
| $15$ |
$2$ |
$(1,2)(3,4)$ |
$-2$ |
| $20$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $30$ |
$4$ |
$(1,2,3,4)$ |
$0$ |
| $24$ |
$5$ |
$(1,2,3,4,5)$ |
$1$ |
| $20$ |
$6$ |
$(1,2,3)(4,5)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.