Properties

Label 6.1567e5_2153e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 1567^{5} \cdot 2153^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$437084223995624533462923469993751= 1567^{5} \cdot 2153^{5} $
Artin number field: Splitting field of $f= x^{7} - 2 x^{5} - 2 x^{4} - x^{3} + 3 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Odd
Determinant: 1.1567_2153.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 31 + 11\cdot 71 + 57\cdot 71^{2} + 70\cdot 71^{3} + 27\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 67 a + 31 + \left(13 a + 27\right)\cdot 71 + \left(61 a + 3\right)\cdot 71^{2} + \left(15 a + 47\right)\cdot 71^{3} + \left(27 a + 15\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 23 + 52\cdot 71 + 28\cdot 71^{2} + 57\cdot 71^{3} + 2\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 41 + 36\cdot 71 + 2\cdot 71^{2} + 62\cdot 71^{3} + 49\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 23 + \left(57 a + 59\right)\cdot 71 + \left(9 a + 40\right)\cdot 71^{2} + \left(55 a + 17\right)\cdot 71^{3} + \left(43 a + 54\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 64 a + 39 + \left(37 a + 42\right)\cdot 71 + \left(48 a + 10\right)\cdot 71^{2} + \left(17 a + 21\right)\cdot 71^{3} + \left(67 a + 8\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 7 a + 25 + \left(33 a + 54\right)\cdot 71 + \left(22 a + 69\right)\cdot 71^{2} + \left(53 a + 7\right)\cdot 71^{3} + \left(3 a + 54\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.