Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 137 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 137 }$: $ x^{2} + 131 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 68 a + 98 + \left(51 a + 90\right)\cdot 137 + \left(a + 72\right)\cdot 137^{2} + \left(107 a + 45\right)\cdot 137^{3} + \left(57 a + 83\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 107 + 12\cdot 137 + 27\cdot 137^{2} + 70\cdot 137^{3} + 101\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 120 a + 122 + \left(78 a + 49\right)\cdot 137 + \left(73 a + 112\right)\cdot 137^{2} + \left(115 a + 34\right)\cdot 137^{3} + \left(64 a + 89\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 49 + 44\cdot 137 + 17\cdot 137^{2} + 110\cdot 137^{3} + 47\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 69 a + 95 + \left(85 a + 57\right)\cdot 137 + \left(135 a + 29\right)\cdot 137^{2} + \left(29 a + 1\right)\cdot 137^{3} + \left(79 a + 49\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 58 + 26\cdot 137 + 88\cdot 137^{2} + 42\cdot 137^{3} + 88\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 17 a + 20 + \left(58 a + 129\right)\cdot 137 + \left(63 a + 63\right)\cdot 137^{2} + \left(21 a + 106\right)\cdot 137^{3} + \left(72 a + 88\right)\cdot 137^{4} +O\left(137^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 7 }$
| Cycle notation |
| $(1,2,3,4,5,6,7)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 7 }$
| Character value |
| $1$ | $1$ | $()$ | $6$ |
| $21$ | $2$ | $(1,2)$ | $-4$ |
| $105$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $105$ | $2$ | $(1,2)(3,4)$ | $2$ |
| $70$ | $3$ | $(1,2,3)$ | $3$ |
| $280$ | $3$ | $(1,2,3)(4,5,6)$ | $0$ |
| $210$ | $4$ | $(1,2,3,4)$ | $-2$ |
| $630$ | $4$ | $(1,2,3,4)(5,6)$ | $0$ |
| $504$ | $5$ | $(1,2,3,4,5)$ | $1$ |
| $210$ | $6$ | $(1,2,3)(4,5)(6,7)$ | $-1$ |
| $420$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |
| $840$ | $6$ | $(1,2,3,4,5,6)$ | $0$ |
| $720$ | $7$ | $(1,2,3,4,5,6,7)$ | $-1$ |
| $504$ | $10$ | $(1,2,3,4,5)(6,7)$ | $1$ |
| $420$ | $12$ | $(1,2,3,4)(5,6,7)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.