Properties

Label 6.149e3_1481e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 149^{3} \cdot 1481^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$10745434489678309= 149^{3} \cdot 1481^{3} $
Artin number field: Splitting field of $f= x^{5} - 7 x^{3} - 2 x^{2} + 11 x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even
Determinant: 1.149_1481.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ a + 10 + \left(11 a + 28\right)\cdot 37 + \left(29 a + 11\right)\cdot 37^{2} + \left(4 a + 34\right)\cdot 37^{3} + \left(13 a + 29\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 14 + \left(25 a + 34\right)\cdot 37 + \left(7 a + 6\right)\cdot 37^{2} + \left(32 a + 24\right)\cdot 37^{3} + \left(23 a + 3\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 31 a + 17 + \left(14 a + 12\right)\cdot 37 + \left(19 a + 2\right)\cdot 37^{2} + \left(24 a + 10\right)\cdot 37^{3} + 2\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 3 + 32\cdot 37 + 24\cdot 37^{2} + 27\cdot 37^{3} + 20\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 a + 30 + \left(22 a + 3\right)\cdot 37 + \left(17 a + 28\right)\cdot 37^{2} + \left(12 a + 14\right)\cdot 37^{3} + \left(36 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.