Properties

Label 6.1489e5_20857e5.14t46.1
Dimension 6
Group $S_7$
Conductor $ 1489^{5} \cdot 20857^{5}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$28889012344035949078704186134055551593= 1489^{5} \cdot 20857^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} - 3 x^{5} + 11 x^{4} + x^{3} - 9 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 307 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 307 }$: $ x^{2} + 306 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 89 + 70\cdot 307 + 100\cdot 307^{2} + 232\cdot 307^{3} + 94\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 66 a + 59 + \left(44 a + 185\right)\cdot 307 + \left(250 a + 154\right)\cdot 307^{2} + \left(211 a + 116\right)\cdot 307^{3} + \left(240 a + 254\right)\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 241 a + 125 + \left(262 a + 163\right)\cdot 307 + \left(56 a + 53\right)\cdot 307^{2} + \left(95 a + 78\right)\cdot 307^{3} + \left(66 a + 283\right)\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 57\cdot 307 + 270\cdot 307^{2} + 287\cdot 307^{3} + 23\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 230 a + 259 + \left(16 a + 249\right)\cdot 307 + \left(19 a + 271\right)\cdot 307^{2} + \left(173 a + 292\right)\cdot 307^{3} + \left(143 a + 75\right)\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 77 a + 182 + \left(290 a + 36\right)\cdot 307 + \left(287 a + 274\right)\cdot 307^{2} + \left(133 a + 139\right)\cdot 307^{3} + \left(163 a + 46\right)\cdot 307^{4} +O\left(307^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 187 + 158\cdot 307 + 103\cdot 307^{2} + 80\cdot 307^{3} + 142\cdot 307^{4} +O\left(307^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $-4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $-2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $-1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $1$
The blue line marks the conjugacy class containing complex conjugation.