Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 227 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 56 + 72\cdot 227 + 161\cdot 227^{2} + 128\cdot 227^{3} + 144\cdot 227^{4} +O\left(227^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 119 + 145\cdot 227 + 138\cdot 227^{2} + 152\cdot 227^{3} + 139\cdot 227^{4} +O\left(227^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 129 + 142\cdot 227 + 97\cdot 227^{2} + 103\cdot 227^{3} + 59\cdot 227^{4} +O\left(227^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 154 + 225\cdot 227 + 147\cdot 227^{2} + 225\cdot 227^{3} + 35\cdot 227^{4} +O\left(227^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 223 + 94\cdot 227 + 135\cdot 227^{2} + 70\cdot 227^{3} + 74\cdot 227^{4} +O\left(227^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 5 }$
| Cycle notation |
| $(1,2)$ |
| $(1,2,3,4,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 5 }$
| Character value |
| $1$ | $1$ | $()$ | $6$ |
| $10$ | $2$ | $(1,2)$ | $0$ |
| $15$ | $2$ | $(1,2)(3,4)$ | $-2$ |
| $20$ | $3$ | $(1,2,3)$ | $0$ |
| $30$ | $4$ | $(1,2,3,4)$ | $0$ |
| $24$ | $5$ | $(1,2,3,4,5)$ | $1$ |
| $20$ | $6$ | $(1,2,3)(4,5)$ | $0$ |
The blue line marks the conjugacy class containing complex conjugation.