# Properties

 Label 6.13976796319717841.20t30.a Dimension 6 Group $S_5$ Conductor $240881^{3}$ Frobenius-Schur indicator 1

# Related objects

## Basic invariants

 Dimension: $6$ Group: $S_5$ Conductor: $13976796319717841= 240881^{3}$ Artin number field: Splitting field of $f= x^{5} - 2 x^{4} - 5 x^{3} + 9 x^{2} + 5 x - 7$ over $\Q$ Size of Galois orbit: 1 Smallest containing permutation representation: 20T30 Parity: Even Projective image: $S_5$ Projective field: Galois closure of 5.5.240881.1

## Galois action

### Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $x^{2} + 24 x + 2$
Roots:
 $r_{ 1 }$ $=$ $18 a + 6 + \left(2 a + 21\right)\cdot 29 + 8\cdot 29^{2} + \left(a + 27\right)\cdot 29^{3} + \left(25 a + 6\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ $r_{ 2 }$ $=$ $7 + 12\cdot 29 + 13\cdot 29^{2} + 4\cdot 29^{3} + 11\cdot 29^{4} +O\left(29^{ 5 }\right)$ $r_{ 3 }$ $=$ $6 a + 4 + \left(11 a + 8\right)\cdot 29 + \left(8 a + 28\right)\cdot 29^{2} + \left(28 a + 2\right)\cdot 29^{3} + \left(21 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ $r_{ 4 }$ $=$ $23 a + 5 + 17 a\cdot 29 + \left(20 a + 1\right)\cdot 29^{2} + 20\cdot 29^{3} + \left(7 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$ $r_{ 5 }$ $=$ $11 a + 9 + \left(26 a + 16\right)\cdot 29 + \left(28 a + 6\right)\cdot 29^{2} + \left(27 a + 3\right)\cdot 29^{3} + \left(3 a + 15\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

### Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

 Cycle notation $(1,2)$ $(1,2,3,4,5)$

### Character values on conjugacy classes

 Size Order Action on $r_1, \ldots, r_{ 5 }$ Character values $c1$ $1$ $1$ $()$ $6$ $10$ $2$ $(1,2)$ $0$ $15$ $2$ $(1,2)(3,4)$ $-2$ $20$ $3$ $(1,2,3)$ $0$ $30$ $4$ $(1,2,3,4)$ $0$ $24$ $5$ $(1,2,3,4,5)$ $1$ $20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.