Properties

Label 6.137_7937.7t7.1c1
Dimension 6
Group $S_7$
Conductor $ 137 \cdot 7937 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$1087369= 137 \cdot 7937 $
Artin number field: Splitting field of $f= x^{7} - x^{6} - x^{5} + 3 x^{4} - 2 x^{3} - x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_7$
Parity: Even
Determinant: 1.137_7937.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 83 a + 80 + \left(19 a + 76\right)\cdot 109 + \left(53 a + 64\right)\cdot 109^{2} + \left(75 a + 99\right)\cdot 109^{3} + \left(58 a + 21\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 79 + 72\cdot 109 + 101\cdot 109^{2} + 77\cdot 109^{3} + 6\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 66 a + 66 + \left(8 a + 83\right)\cdot 109 + \left(14 a + 91\right)\cdot 109^{2} + \left(57 a + 25\right)\cdot 109^{3} + \left(108 a + 64\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 a + 54 + \left(89 a + 13\right)\cdot 109 + \left(55 a + 98\right)\cdot 109^{2} + \left(33 a + 12\right)\cdot 109^{3} + \left(50 a + 5\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 55 + 30\cdot 109 + 101\cdot 109^{2} + 104\cdot 109^{3} + 26\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 80 + 23\cdot 109 + 99\cdot 109^{2} + 45\cdot 109^{3} + 86\cdot 109^{4} +O\left(109^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 43 a + 23 + \left(100 a + 26\right)\cdot 109 + \left(94 a + 97\right)\cdot 109^{2} + \left(51 a + 68\right)\cdot 109^{3} + 6\cdot 109^{4} +O\left(109^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$-1$
$420$$12$$(1,2,3,4)(5,6,7)$$-1$
The blue line marks the conjugacy class containing complex conjugation.