Properties

Label 6.1087369.7t7.a
Dimension $6$
Group $S_7$
Conductor $1087369$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:\(1087369\)\(\medspace = 137 \cdot 7937 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 7.3.1087369.1
Galois orbit size: $1$
Smallest permutation container: $S_7$
Parity: even
Projective image: $S_7$
Projective field: Galois closure of 7.3.1087369.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: \( x^{2} + 108x + 6 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 83 a + 80 + \left(19 a + 76\right)\cdot 109 + \left(53 a + 64\right)\cdot 109^{2} + \left(75 a + 99\right)\cdot 109^{3} + \left(58 a + 21\right)\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 79 + 72\cdot 109 + 101\cdot 109^{2} + 77\cdot 109^{3} + 6\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 66 a + 66 + \left(8 a + 83\right)\cdot 109 + \left(14 a + 91\right)\cdot 109^{2} + \left(57 a + 25\right)\cdot 109^{3} + \left(108 a + 64\right)\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 26 a + 54 + \left(89 a + 13\right)\cdot 109 + \left(55 a + 98\right)\cdot 109^{2} + \left(33 a + 12\right)\cdot 109^{3} + \left(50 a + 5\right)\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 55 + 30\cdot 109 + 101\cdot 109^{2} + 104\cdot 109^{3} + 26\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 80 + 23\cdot 109 + 99\cdot 109^{2} + 45\cdot 109^{3} + 86\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 43 a + 23 + \left(100 a + 26\right)\cdot 109 + \left(94 a + 97\right)\cdot 109^{2} + \left(51 a + 68\right)\cdot 109^{3} + 6\cdot 109^{4} +O(109^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$21$ $2$ $(1,2)$ $4$
$105$ $2$ $(1,2)(3,4)(5,6)$ $0$
$105$ $2$ $(1,2)(3,4)$ $2$
$70$ $3$ $(1,2,3)$ $3$
$280$ $3$ $(1,2,3)(4,5,6)$ $0$
$210$ $4$ $(1,2,3,4)$ $2$
$630$ $4$ $(1,2,3,4)(5,6)$ $0$
$504$ $5$ $(1,2,3,4,5)$ $1$
$210$ $6$ $(1,2,3)(4,5)(6,7)$ $-1$
$420$ $6$ $(1,2,3)(4,5)$ $1$
$840$ $6$ $(1,2,3,4,5,6)$ $0$
$720$ $7$ $(1,2,3,4,5,6,7)$ $-1$
$504$ $10$ $(1,2,3,4,5)(6,7)$ $-1$
$420$ $12$ $(1,2,3,4)(5,6,7)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.