Properties

Label 6.127e5_5879e5.14t46.1c1
Dimension 6
Group $S_7$
Conductor $ 127^{5} \cdot 5879^{5}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_7$
Conductor:$232025600709683732602839428393= 127^{5} \cdot 5879^{5} $
Artin number field: Splitting field of $f= x^{7} - 3 x^{6} + 4 x^{5} - 5 x^{4} + 4 x^{3} - 2 x^{2} + x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 14T46
Parity: Even
Determinant: 1.127_5879.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 a + 24 + \left(15 a + 12\right)\cdot 31 + \left(22 a + 21\right)\cdot 31^{2} + \left(5 a + 6\right)\cdot 31^{3} + \left(29 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 16 + \left(15 a + 17\right)\cdot 31 + \left(8 a + 19\right)\cdot 31^{2} + \left(25 a + 26\right)\cdot 31^{3} + \left(a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 17 + \left(6 a + 16\right)\cdot 31 + \left(10 a + 14\right)\cdot 31^{2} + \left(16 a + 14\right)\cdot 31^{3} + \left(30 a + 1\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 8 + 28\cdot 31^{2} + 21\cdot 31^{3} + 2\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 25 a + 30 + \left(15 a + 11\right)\cdot 31 + \left(16 a + 28\right)\cdot 31^{2} + \left(9 a + 22\right)\cdot 31^{3} + \left(12 a + 15\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 17 a + 14 + \left(24 a + 15\right)\cdot 31 + \left(20 a + 28\right)\cdot 31^{2} + \left(14 a + 5\right)\cdot 31^{3} + 15\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 7 }$ $=$ $ 6 a + 18 + \left(15 a + 18\right)\cdot 31 + \left(14 a + 14\right)\cdot 31^{2} + \left(21 a + 25\right)\cdot 31^{3} + \left(18 a + 30\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character value
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$
The blue line marks the conjugacy class containing complex conjugation.