Properties

Label 6.11e3_523e3.20t35.1
Dimension 6
Group $S_5$
Conductor $ 11^{3} \cdot 523^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$190407092777= 11^{3} \cdot 523^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 2 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 103 + 452\cdot 467 + 304\cdot 467^{2} + 160\cdot 467^{3} + 237\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 209 + 205\cdot 467 + 99\cdot 467^{2} + 299\cdot 467^{3} + 120\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 256 + 414\cdot 467 + 251\cdot 467^{2} + 329\cdot 467^{3} + 236\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 397 + 338\cdot 467 + 360\cdot 467^{2} + 288\cdot 467^{3} + 198\cdot 467^{4} +O\left(467^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 437 + 456\cdot 467 + 383\cdot 467^{2} + 322\cdot 467^{3} + 140\cdot 467^{4} +O\left(467^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $6$
$10$ $2$ $(1,2)$ $0$
$15$ $2$ $(1,2)(3,4)$ $-2$
$20$ $3$ $(1,2,3)$ $0$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $1$
$20$ $6$ $(1,2,3)(4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.