Properties

Label 6.11e3_47e4.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 11^{3} \cdot 47^{4}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$6494855411= 11^{3} \cdot 47^{4} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - x^{3} + 3 x^{2} - x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.11.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 97 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 12 + 45\cdot 97 + 5\cdot 97^{2} + 69\cdot 97^{3} + 59\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 + 66\cdot 97 + 53\cdot 97^{2} + 73\cdot 97^{3} + 24\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 74 + 91\cdot 97 + 23\cdot 97^{2} + 38\cdot 97^{3} + 70\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 79 + 47\cdot 97 + 69\cdot 97^{2} + 53\cdot 97^{3} + 55\cdot 97^{4} +O\left(97^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 80 + 39\cdot 97 + 41\cdot 97^{2} + 56\cdot 97^{3} + 80\cdot 97^{4} +O\left(97^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.