Properties

Label 6.11e3_2053e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 11^{3} \cdot 2053^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$11517146829287= 11^{3} \cdot 2053^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.11_2053.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 157 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 16 + 103\cdot 157 + 13\cdot 157^{2} + 151\cdot 157^{3} + 13\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 6\cdot 157 + 17\cdot 157^{2} + 135\cdot 157^{3} + 45\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 55 + 69\cdot 157 + 73\cdot 157^{2} + 21\cdot 157^{3} + 114\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 64 + 7\cdot 157 + 106\cdot 157^{2} + 21\cdot 157^{3} + 138\cdot 157^{4} +O\left(157^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 126 + 127\cdot 157 + 103\cdot 157^{2} + 141\cdot 157^{3} + 157^{4} +O\left(157^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.