Properties

Label 6.11243e3.20t35.1c1
Dimension 6
Group $S_5$
Conductor $ 11243^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$6$
Group:$S_5$
Conductor:$1421171965907= 11243^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 20T35
Parity: Odd
Determinant: 1.11243.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 10\cdot 31 + 15\cdot 31^{2} + 9\cdot 31^{3} + 19\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 18 + \left(14 a + 12\right)\cdot 31 + \left(8 a + 10\right)\cdot 31^{2} + 17\cdot 31^{3} + \left(28 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 17 a + 15 + \left(16 a + 27\right)\cdot 31 + \left(22 a + 12\right)\cdot 31^{2} + \left(30 a + 9\right)\cdot 31^{3} + \left(2 a + 18\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 27 + 30\cdot 31 + \left(16 a + 26\right)\cdot 31^{2} + \left(27 a + 8\right)\cdot 31^{3} + \left(20 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 7 + \left(30 a + 11\right)\cdot 31 + \left(14 a + 27\right)\cdot 31^{2} + \left(3 a + 16\right)\cdot 31^{3} + \left(10 a + 22\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$6$
$10$$2$$(1,2)$$0$
$15$$2$$(1,2)(3,4)$$-2$
$20$$3$$(1,2,3)$$0$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$1$
$20$$6$$(1,2,3)(4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.