Properties

Label 6.109...857.14t46.a.a
Dimension $6$
Group $S_7$
Conductor $1.094\times 10^{30}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $6$
Group: $S_7$
Conductor: \(109\!\cdots\!857\)\(\medspace = 1018217^{5} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 7.3.1018217.1
Galois orbit size: $1$
Smallest permutation container: 14T46
Parity: even
Determinant: 1.1018217.2t1.a.a
Projective image: $S_7$
Projective stem field: Galois closure of 7.3.1018217.1

Defining polynomial

$f(x)$$=$ \( x^{7} - x^{6} + x^{5} - 3x^{4} - x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: \( x^{2} + 33x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 16 a + 13 + \left(27 a + 19\right)\cdot 37 + \left(18 a + 22\right)\cdot 37^{2} + \left(33 a + 8\right)\cdot 37^{3} + \left(2 a + 15\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 14 a + 12 + \left(29 a + 11\right)\cdot 37 + \left(7 a + 28\right)\cdot 37^{2} + \left(5 a + 34\right)\cdot 37^{3} + \left(15 a + 16\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 21 a + 3 + \left(9 a + 2\right)\cdot 37 + \left(18 a + 33\right)\cdot 37^{2} + \left(3 a + 12\right)\cdot 37^{3} + \left(34 a + 30\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 18 a + 32 + \left(2 a + 32\right)\cdot 37 + \left(22 a + 9\right)\cdot 37^{2} + \left(6 a + 36\right)\cdot 37^{3} + \left(8 a + 27\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 23 a + 31 + \left(7 a + 3\right)\cdot 37 + \left(29 a + 30\right)\cdot 37^{2} + \left(31 a + 10\right)\cdot 37^{3} + \left(21 a + 35\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 19 a + 30 + \left(34 a + 24\right)\cdot 37 + \left(14 a + 21\right)\cdot 37^{2} + \left(30 a + 3\right)\cdot 37^{3} + \left(28 a + 17\right)\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 28 + 16\cdot 37 + 2\cdot 37^{2} + 4\cdot 37^{3} + 5\cdot 37^{4} +O(37^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2,3,4,5,6,7)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character valueComplex conjugation
$1$$1$$()$$6$
$21$$2$$(1,2)$$-4$
$105$$2$$(1,2)(3,4)(5,6)$$0$
$105$$2$$(1,2)(3,4)$$2$
$70$$3$$(1,2,3)$$3$
$280$$3$$(1,2,3)(4,5,6)$$0$
$210$$4$$(1,2,3,4)$$-2$
$630$$4$$(1,2,3,4)(5,6)$$0$
$504$$5$$(1,2,3,4,5)$$1$
$210$$6$$(1,2,3)(4,5)(6,7)$$-1$
$420$$6$$(1,2,3)(4,5)$$-1$
$840$$6$$(1,2,3,4,5,6)$$0$
$720$$7$$(1,2,3,4,5,6,7)$$-1$
$504$$10$$(1,2,3,4,5)(6,7)$$1$
$420$$12$$(1,2,3,4)(5,6,7)$$1$