Properties

Label 56.540...896.105.a
Dimension $56$
Group $A_8$
Conductor $5.403\times 10^{335}$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$56$
Group:$A_8$
Conductor:\(540\!\cdots\!896\)\(\medspace = 2^{172} \cdot 823643^{48} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.81841577658693500678182700989203572064256.1
Galois orbit size: $1$
Smallest permutation container: 105
Parity: even
Projective image: $A_8$
Projective field: Galois closure of 8.0.81841577658693500678182700989203572064256.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: \( x^{2} + 108x + 6 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 75 a + 29 + \left(78 a + 87\right)\cdot 109 + \left(23 a + 76\right)\cdot 109^{2} + \left(37 a + 43\right)\cdot 109^{3} + \left(54 a + 27\right)\cdot 109^{4} + \left(87 a + 99\right)\cdot 109^{5} + \left(44 a + 60\right)\cdot 109^{6} + \left(75 a + 43\right)\cdot 109^{7} + \left(60 a + 75\right)\cdot 109^{8} + \left(102 a + 34\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 108 a + 107 + \left(15 a + 80\right)\cdot 109 + \left(34 a + 15\right)\cdot 109^{2} + \left(93 a + 80\right)\cdot 109^{3} + \left(33 a + 54\right)\cdot 109^{4} + \left(105 a + 68\right)\cdot 109^{5} + \left(15 a + 65\right)\cdot 109^{6} + \left(54 a + 48\right)\cdot 109^{7} + \left(37 a + 67\right)\cdot 109^{8} + 84 a\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 48 + 13\cdot 109 + 45\cdot 109^{2} + 44\cdot 109^{3} + 42\cdot 109^{4} + 28\cdot 109^{5} + 32\cdot 109^{6} + 40\cdot 109^{7} + 24\cdot 109^{8} + 41\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 93 + 83\cdot 109^{2} + 99\cdot 109^{3} + 28\cdot 109^{4} + 97\cdot 109^{5} + 78\cdot 109^{6} + 70\cdot 109^{7} + 59\cdot 109^{8} + 85\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 99 + 13\cdot 109 + 6\cdot 109^{2} + 103\cdot 109^{3} + 97\cdot 109^{4} + 84\cdot 109^{5} + 76\cdot 109^{6} + 93\cdot 109^{7} + 94\cdot 109^{8} + 13\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 34 a + 104 + \left(30 a + 90\right)\cdot 109 + \left(85 a + 21\right)\cdot 109^{2} + \left(71 a + 57\right)\cdot 109^{3} + \left(54 a + 44\right)\cdot 109^{4} + \left(21 a + 23\right)\cdot 109^{5} + \left(64 a + 18\right)\cdot 109^{6} + \left(33 a + 74\right)\cdot 109^{7} + \left(48 a + 60\right)\cdot 109^{8} + \left(6 a + 76\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 68 + 50\cdot 109 + 44\cdot 109^{2} + 86\cdot 109^{3} + 35\cdot 109^{4} + 3\cdot 109^{5} + 18\cdot 109^{6} + 87\cdot 109^{7} + 2\cdot 109^{8} + 27\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( a + 106 + \left(93 a + 97\right)\cdot 109 + \left(74 a + 33\right)\cdot 109^{2} + \left(15 a + 30\right)\cdot 109^{3} + \left(75 a + 104\right)\cdot 109^{4} + \left(3 a + 30\right)\cdot 109^{5} + \left(93 a + 85\right)\cdot 109^{6} + \left(54 a + 86\right)\cdot 109^{7} + \left(71 a + 50\right)\cdot 109^{8} + \left(24 a + 47\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,4,5,6,7,8)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $56$
$105$ $2$ $(1,2)(3,4)(5,6)(7,8)$ $8$
$210$ $2$ $(1,2)(3,4)$ $0$
$112$ $3$ $(1,2,3)$ $-4$
$1120$ $3$ $(1,2,3)(4,5,6)$ $-1$
$1260$ $4$ $(1,2,3,4)(5,6,7,8)$ $0$
$2520$ $4$ $(1,2,3,4)(5,6)$ $0$
$1344$ $5$ $(1,2,3,4,5)$ $1$
$1680$ $6$ $(1,2,3)(4,5)(6,7)$ $0$
$3360$ $6$ $(1,2,3,4,5,6)(7,8)$ $-1$
$2880$ $7$ $(1,2,3,4,5,6,7)$ $0$
$2880$ $7$ $(1,3,4,5,6,7,2)$ $0$
$1344$ $15$ $(1,2,3,4,5)(6,7,8)$ $1$
$1344$ $15$ $(1,3,4,5,2)(6,7,8)$ $1$
The blue line marks the conjugacy class containing complex conjugation.